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Abstract

Can we use social ties to improve technology adoption? I examine this question when
the benefits from a new technology vary in the population, with such heterogeneity
affecting the diffusion process. I develop a theoretical framework of information
diffusion in a network that exhibits the possibility of low information equilibria
where agents sub-optimally decide not to adopt new technology, highlighting the
need for interventions for information diffusion. My simulations suggest that the
optimal network-based intervention in such a scenario relies on the underlying
heterogeneity in the population. More importantly, network-centrality-based in-
terventions recommended in the literature fail to be effective, and an alternative
adoption probability-based intervention may work better under some conditions.
I test these predictions using data from Malawi and provide evidence supporting
the theoretical model. My results suggest that population heterogeneity in benefits
from a technology affects the success of alternative network-based interventions that
promote that technology.
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1 Introduction

Technology adoption in agriculture drives economic growth through its effect on structural

transformation (Bustos et al., 2016). However, the adoption of modern technologies

has been low in developing regions, especially in Sub-Saharan Africa (Bold et al., 2017).

Information constraints are one of the key reasons behind such a phenomenon (Magruder,

2018). How can we use existing social ties to improve the adoption of a new technology?

The literature argues that the answer depends on the underlying diffusion process. Given

a threshold-based characterization of the information diffusion process, targeting based

on existing social ties may be required for widespread adoption. In such a scenario, the

literature recommends targeting agents central to the network (Beaman et al., 2021a).

However, the recommendation assumes that the diffusion only depends on the agents’

positions in the network. What happens if the agents differ in terms of other characteristics

that affect the diffusion process?

This paper investigates network-based targeting strategies for improving technology

adoption. In particular, I focus on the situation where the new technology can be more

beneficial to some agents than others, with this heterogeneity in benefits affecting the

diffusion of information. The benefits can vary across agents due to several possible reasons.

The agents can differ in terms of their education, skills, and ability, affecting how much

they can learn about a new technology and use it in practice. They can also vary in terms

of other characteristics, e.g., land quality (for agriculture), size of operation (for both

farm and firm households), access to infrastructure (such as road and irrigation facilities),

and access to other technologies. For my purpose, I consider heterogeneity in benefits to

reflect the existing network structure driven by agent sorting according to their observable

and unobservable characteristics. I explore whether the optimal network-based targeting

strategies vary with the extent of heterogeneity within the network. More specifically, I

concentrate on the relative performance of two targeting strategies: targeting based on

centrality and targeting based on probability of adoption.

I develop a theoretical framework where economic agents participate in a two-stage

decision process. In the first stage, uninformed agents decide whether or not to get fully
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informed via experimentation about a new technology. Since experimentation is costly,

the agents engage in DeGroot learning to make this decision.1 In the second stage, fully

informed agents decide whether or not to adopt the technology. This framework helps me

formalize a scenario where pessimism regarding the prospect of a new technology will lead

to low adoption, even if it is efficient for many agents to adopt.

Based on my theoretical model, I use simulations to evaluate the relative importance of

different targeting strategies and to generate testable hypotheses.2 I test these predictions

by combining two different data sources from Malawi. The first one is the replication

data (Beaman et al., 2021b) from a randomized controlled trial (RCT) conducted by

Beaman, BenYishay, Magruder, and Mobarak (2021a) (henceforth, BBMM). The second

dataset is the Agricultural Extension Services and Technology Adoption Survey (henceforth,

AESTAS) data (IFPRI, 2021a,b) collected by the International Food Policy Research

Institute (IFPRI). One of the reasons existing studies made simplifying assumptions on

the structure of heterogeneity in the population is the difficulty in observing heterogeneity

in benefits beforehand. The benefits are only realized after adoption, so factoring them

into the targeting strategies is difficult. I attempt to solve this issue using additional data

to estimate adoption conditional on observable demographics. This way, I can categorize

the population’s propensity to adopt a new technology. I calculate households’ probability

of adoption in the BBMM data using estimates from the AESTAS sample. BBMM data

is used as their experiment relies on exploiting the centrality of seeds3 to improve the

adoption of a technology suitable for my analysis, thus including all other information

that I need. I exploit the village-level and experimental variations in the BBMM data to

test my hypotheses.
1DeGroot learning refers to a social learning process whereby agents form beliefs/ opinions as a weighted

average of the beliefs/ opinions of people they are linked to. Here the weights correspond to how much the
agents are influenced by one another. It is a heuristic, as agents do not account for the interdependence of
beliefs between each of the people they are connected to (Barnett-Howell and Mobarak, 2021). Chapter
8.3 of Jackson (2010) contains more information on this type of learning.

2The use of simulations is not new to the network literature. For example, Bala and Goyal (1998)
uses simulations to generate spatial and temporal adoption patterns when individuals learn from their
neighbors; Acemoglu et al. (2011) uses simulations to show that innovations might spread further across
networks with a smaller degree of clustering. Similar to Beaman et al. (2021a), I use them to understand
the effectiveness of targeting strategies a few periods down the line.

3In the network literature, information entry points are called seeds.

3



My simulations indicate that the relative performance of different targeting strategies

depends on the degree of heterogeneity in a network. Centrality-based targeting strategies

should be less effective in settings where the agents vary significantly in terms of their

benefits from adopting a technology. In such settings, targeting based on the likelihood

of adoption should perform better if the network is highly assortative in the benefits.

The intuition behind such a result lies in the characteristics of the central seeds in a

network. Central seeds are, by definition, the most well-connected people in a network.

Thus, selecting them would maximize the diffusion if diffusion depends only on the agents’

positions in the network. If agents vary regarding other characteristics that affect diffusion,

we need to consider this heterogeneity for effective diffusion. Centrality-based targeting

fails to consider this heterogeneity. In an assortative network, central seeds also represent

the average network characteristics. In a setting where a new technology applies to only a

specific sub-section of the population, targeting based on centrality is more likely to fail in

reaching the population of interest. Targeting the population of interest works better in

such a scenario.

My empirical results show evidence in favor of my hypothesis. I show that the positive

effect of seeds’ centrality on the adoption of pit planting decreases with an increase in

village-level heterogeneity in the probability of adoption. Simultaneously, the negative

impact of seeds’ probability of adoption drops with increased village-level heterogeneity.

The study makes three contributions to the existing literature. First, I provide theoretical

and empirical evidence that the success of network-based targeting strategies depends

on population-level heterogeneity. Diffusion of information via networks is the key to

increasing technology adoption (Besley and Case, 1993; Foster and Rosenzweig, 1995;

Conley and Udry, 2010; Krishnan and Patnam, 2013). In recent years, several studies have

focused on the role of networks in the diffusion of technologies.4 A growing proportion of

these studies explore the most effective way to use social networks to improve technology

adoption (e.g., Banerjee et al., 2013; BenYishay and Mobarak, 2018). A few of these

studies explore the role of the underlying diffusion process in designing the most effective
4See Cheng (2021) for a review of the existing literature.
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targeting policies (e.g., Beaman et al., 2021a; Akbarpour et al., 2021). However, these

studies implicitly assume existing network ties are the only factor characterizing diffusion.

In the current study, I consider the population to be heterogeneous in terms of the benefits

they get from the new technology, with this heterogeneity directly affecting the effectiveness

of targeting strategies. In such a scenario, I show evidence that optimal targeting strategies

may differ from the ones prescribed in the existing literature. In particular, the effectiveness

of a targeting policy will vary depending on population-level heterogeneity in terms of

the benefits of the new technology. Considering population-level heterogeneity in social

learning itself is not new (e.g., Munshi, 2004; Bandiera and Rasul, 2006; Conley and Udry,

2010).5 However, to the best of my knowledge, the current study is the first to consider

the consequences of population-level heterogeneity on network-based targeting strategies.6

Second, my theoretical framework helps formalize the scenario where agents learn from

their network about a technology more beneficial to some of them than others. Existing

theories on the diffusion of information regarding a technology in a network consider

technologies equally helpful to everyone. The adoption may still differ due to heterogeneity

in costs. However, these heterogeneous costs are mostly assumed to be known by the

agents and thus do not require learning.7 Thus, simplifying assumptions are made such

that the learning involves the characteristics that are similar for all the agents and not the

characteristics that differentiate them. This assumption helps us to focus on a problem

where the agents are collectively trying to uncover some hidden characteristics of interest

(e.g., in the theoretical models of Acemoglu et al., 2008 and Golub and Jackson, 2010).

More importantly, a consequence of this assumption is that the diffusion of knowledge

regarding the technology depends only on the agent-level heterogeneity in network ties. In

many scenarios, however, agents face heterogeneous benefits in adopting a new technology
5Using the data from Indian Green Revolution, Munshi (2004) finds that information flows are weaker

for rice growers than wheat growers as rice-growing regions are more heterogeneous. Bandiera and Rasul
(2006) observe network effects on technology adoption to vary based on the number of adopters in the
network for sunflower production in Mozambique. Conley and Udry (2010) finds that only novice farmers
learn about using fertilizers for pineapple production in Ghana from their veteran neighbors.

6Although de Janvry et al. (2022) document the consequences of village-level heterogeneity on farmer-
level adoption decisions, they do not focus on the consequences of their findings on the design of
network-based targeting strategies.

7For heterogeneous costs unknown to the agents, there is usually learning via experimentation but no
social learning.
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(Suri, 2011). For example, the performance of some agricultural practices may depend on

land quality.8 Thus, the benefits of some technologies may vary depending on the agent-

specific characteristics (Crane-Droesch, 2017). The consequences of this heterogeneity on

the diffusion of knowledge have not previously been modeled in the existing literature.

Finally, I provide policy directions for network-based targeting when the population

is heterogeneous. In particular, I argue in favor of targeting early adopter households

when the heterogeneity is high and the network is highly assortative in terms of the

heterogeneity.9 Meanwhile, I argue in favor of targeting central households when the

heterogeneity is low. This policy recommendation contributes to the literature that

focuses on understanding the characteristics and impact of opinion leaders in diffusing new

knowledge. In this literature, studies like Maertens (2017) and Miller and Mobarak (2015)

show that learning is more effective when the opinion leaders are in some way superior

than their followers. On the other hand, BenYishay and Mobarak (2018) shows that

communicators who share a group identity with the farmers or face comparable agricultural

conditions better convince farmers to adopt a new technology. Feder and Savastano (2006)

takes a middle ground in arguing that the most influential opinion leaders are superior

to their followers, but not excessively so. My study contributes to this debate from a

network-based targeting perspective.

The remainder of this article is organized as follows. In Section 2, I present the

theoretical framework of my analysis. Section 3 offers the simulations that help me form

the hypotheses for this study. Section 4 discusses the hypotheses, my empirical strategy

for testing them, and the data I use. Section 5 presents and discusses my empirical results.

Finally, in Section 6, I summarize my findings and make concluding remarks.
8In Munshi (2004), adopting new rice varieties is sensitive to growing conditions. Tjernström (2017)

shows that soil quality heterogeneity affects farmers’ ability to learn from their peer’s experimentation
with the new technology. Pit planting studied in BenYishay and Mobarak (2018) and Beaman et al.
(2021a) requires flat land.

9I define early adopters as households more likely to adopt a new technology given homogeneous cost.
This definition is similar to that of natural early adopters in Catalini and Tucker (2017).
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2 Theoretical Framework

I consider a choice problem that requires learning in a social network. The problem

involves the adoption of a technology when agents vary in terms of the benefits they get

from the technology. In particular, the benefits are such that it is optimal to adopt the

new technology only for a sub-section of the population. However, the benefits are initially

unknown to the agents, who make the adoption decision only after learning about the

benefits via experimentation. As experimentation is costly, agents rely on their social ties

to determine whether or not to experiment.

Similar to Golub and Jackson (2010), I consider agents to have an initial opinion and be

involved in DeGroot learning (developed in DeGroot (1974) and DeMarzo et al. (2003)).10 I

focus on the scenario where the underlying state is time-varying, similar to Acemoglu et al.

(2008). Like Banerjee et al. (2021), my model considers both informed and uninformed

agents, where agents decide whether to get informed about the new technology.11 In

addition, I consider the possibility that agents are heterogeneous regarding their distribution

of payoffs associated with the new technology.

2.1 Perfect Information Benchmark

Consider a traditional technology that has a sure payoff of πT and new technology that

provides a payoff of πN(ωit), where ωit ∈ Ω is the state of the world parameter drawn

independently at each period t according to the distribution p∗
i (ωit) for household i.12 To

simplify, further consider the situation when there are only two states of the world: one

where the new technology has a higher payoff than the traditional one (denoted ωH), and

the other where the new technology has a lower payoff than the traditional one (denoted
10DeGroot learning is considered as it is used in all the canonical models of information aggregation

in the development literature. There is empirical evidence in favor of it (see Corazzini et al., 2012 and
Chandrasekhar et al., 2020).

11In Banerjee et al. (2021), uninformed agents have empty beliefs, and informed agents can be partially
or fully informed. In contrast, I assume uninformed agents have an initial opinion (this includes partially
informed agents) and informed agents are fully informed.

12The assumption of draws not being correlated over time within a household helps me abstract away
from the problem where households observe the draws over time and update their beliefs accordingly. The
assumption of draws not being correlated over time between households constrains how the households
can learn from each other.
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ωL). Let p∗
iH := p∗

i (ωH) denote the probability that for household i the new technology

has a higher payoff than the traditional one.

Assuming households to be risk-neutral and myopic, the households’ technology-adoption

decision is then to compare the net benefit of adopting the new technology with that of

the traditional technology.13 The benefit of adopting the new technology for household i

is:

∑
s∈{H,L}

p∗
isπ

N(ωs) = p∗
iHπN(ωH) + p∗

iLπN(ωL), where p∗
iL := p∗

i (ωL) = 1 − p∗
iH (1)

Let ci denote the cost of adopting the new technology for household i,14 then the household

should adopt the new technology if and only if:

∑
s∈{H,L}

p∗
isπ

N(ωs) − ci ≥ πT . (2)

As I have now defined the necessary notations, let me first formally state the assumption

made above regarding the states of the world:

Assumption 1: ∀it, ∃ωit, ω′
it ∈ Ω such that πN(ωit) ≥ πT ≥ πN(ω′

it); i.e., for each

household i and period t, there exist states of the world such that the payoff from the new

technology is higher (lower) than the old technology.

For the simplified case of Ω = {ωH , ωL}, this gives us the condition: πN(ωH) ≥ πT ≥

πN (ωL), which is how I defined ωH and ωL above. This is a necessary assumption to ensure
13The assumption of risk neutrality is for simplification purposes only, as it allows us to focus solely on

the expected values without considering the variation around them. As the new technology is assumed
to be riskier than the traditional technology here, risk-averse households may find it less attractive. As
such, the net benefit of the new technology would be less than the one perceived by a model where
the households are risk-neutral. One can easily accommodate this in the current model by dividing the
expected payoff of the new technology by its variance. Such an exercise would not change the main results
of the model.

The myopia assumption is also necessary for simplification purposes. It helps me focus on a static model
instead of a dynamic one. Moreover, in a social learning model, non-myopic households may strategically
wait for their peers to learn before deciding to learn. This will lead to sequential social learning as defined
in Golub and Sadler (2016), where agents will wait for their peers to be informed first, which is beyond
the scope of this paper.

14I assume the adoption costs to be heterogeneous and privately known to the agents and focus on the
uncertainty surrounding the unknown expected benefits in the following subsection. This is a simplified
scenario, which can easily extend to cases where costs are uncertain, too. Similarly, one can extend the
social learning described in the following subsection to model learning about partially correlated unknown
heterogeneous costs.
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that one technology doesn’t dominate the other in terms of benefits in all states of the

world. I further assume:

Assumption 2: ∃i, j ∈ I such that ∑
s∈{H,L} p∗

isπ
N (ωs)−ci > πT and ∑

s∈{H,L} p∗
jsπ

N (ωs)−

cj < πT , where I denote the set of all households.

The assumption implies that there is enough heterogeneity in the population so that

some households get positive net benefits from adopting the new technology instead of the

traditional one, while others do not. This assumption ensures that the new technology is

better for only a fraction of households in the population, making social learning noisy in

this context.

2.2 Imperfect Information and Learning

So far, I have assumed households to have perfect information regarding p∗
iH . Next, I

relax that assumption and allow for the possibility that households can be uninformed

about p∗
iH . Let pH

it be household i’s belief of p∗
iH at period t.15 The beliefs can be informed

or uninformed. For informed households, pH
it = p∗

iH . On the contrary, the uninformed

households need to put effort into experimentation eit ∈ {0, 1} to learn p∗
iH .16 If eit = 1,

the household i at period t learns about p∗
iH at cost ηi.17 I additionally assume that

households incur the cost of experimentation only once - the first time they get informed

via experimentation, and once they are informed, they remain informed forever.18

Before learning about p∗
iH via costly experimentation, the households can use DeGroot

averaging to approximate p∗
iH costlessly with information from their social ties. Let G

denote the n × n weighted and non-negative influence matrix (n = |I|), where Gij ≥ 0
15Similarly, pL

it = 1 − pH
it is household i’s belief of p∗

iL at period t.
16I make no assumptions on the initial number of informed households. Whether or not a household is

informed might depend on their education, skills, and abilities. As I will argue in the next subsection,
from a policy perspective, I am interested in the scenario where the majority (if not all) of the households
are uninformed about the new technology to begin with.

17I simplify the experimentation stage to be a one-shot process where agents invest in a costly effort
and learn about p∗

iH with certainty. This is to abstract away from the learning from experimentation
and focus on the learning from doing. One can extend this model to the situation where investment in
experimentation leads to learning about p∗

iH with some uncertainty, which is beyond the scope of my
analysis. Also, note that the heterogeneity in p∗

iH and the myopic nature of the households stop them
from free-riding on each others’ experimentation in this scenario.

18In other words, if we think of eit = 1 as an indicator of the household i being informed at period t,
then if eiτ = 1, then eit = 1 ∀t ≥ τ .

9



represents the weight i places on j’s opinion (with ∑
j∈I Gij = 1 and Gii ̸= 0).19 Then

p̂H
it = ∑

j∈I Gijp
H
jt−1 denotes household i’s approximation based on their aggregation of

opinions following the DeGroot averaging. This brings me to the next assumption:

Assumption 3: The networks are assortative in p∗
iHs, i.e., Gij ̸= 0 if |p∗

iH − p∗
jH | < δ,

where δ is a small number.20

The rationale behind such an assumption is twofold. First, it is well-recognized in the

technology adoption literature that connected agents share similar characteristics that

help them benefit similarly from a technology (Munshi, 2007). For example, focusing only

on the geographic connections, it is easy to argue that neighboring farmers share soil

quality. As a result, they benefit similarly from an agricultural technology whose outcomes

depend on soil quality. For network connections, the similarity extends beyond geographic

characteristics. I expect households to sort according to their socio-economic attributes.

As the benefits from any technology depend on these socio-economic attributes, connected

households sharing socio-economic attributes should benefit similarly from the technology.

Panel A: Assortative Panel B: Not Assortative

Figure 1: Networks with Heterogeneous Benefits

In addition, the assortative property is necessary for the social ties to be informative

with varying p∗
iHs. To demonstrate this, consider Figure 1. The panels of Figure 1 present

19I make no further assumptions regarding the Gijs for the theoretical model. However, in the simulations
presented in the next section, they are assumed to be equal whenever they are non-zero.

20The assortativity property is similar to the homophily defined in Golub and Jackson (2012a,b,c). In
their model, homophily is the ’tendency of agents to associate disproportionately with those having similar
traits.’ I consider assortativity to be a more specific version of homophily, where the agents are linked
only with those that share similar traits and not with others. This leads to the scenario where agents
place positive weight only on those with similar characteristics. One can extend the model to the more
general scenario of homophily, where the agents disproportionately weigh their connections based on their
similarity in characteristics with those connections.
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heterogeneous networks, with the colors representing benefits from some technology. In

both figures, Agents numbered 1 and 2 should not adopt the technology as their benefits are

low (represented by the color blue). Similarly, Agents 3 and 4 should adopt the technology

as their benefits are high (represented by red). Finally, Agent number 5 would benefit

moderately from the technology (represented by yellow). The figures differ, however, in

the network ties (given by the arrows).

Panel A presents an assortative network. Here, uninformed agents can use their social

ties to form a belief close to their true types. To see this, consider Agent 4, who should

adopt the technology if informed. If uninformed, she would seek information from Agents 3

and 5. Agents 3 and 5 observe weakly higher than average benefits from the technology if

they are informed. Thus, informed agents 3 and 5 can influence agent 4 in making the right

choice regarding whether or not to put effort into experimentation to learn about the new

technology. Contrast this with the network in Panel B, which is a non-assortative network.

Here, if uninformed, Agent 4 would seek information from Agents 1 and 2. Agents 1 and 2

observe lower-than-average benefits from the technology if informed. Thus, if Agent 4 is

uninformed and seeks information from her informed network ties, she will be influenced

to make the wrong choice regarding whether or not to put effort into experimentation to

learn about the new technology. Thus, social learning will not help agents make the right

choice for the network in Panel B.21

I assume a two-stage decision-making process of technology adoption that builds on

Chandrasekhar et al. (2018), Banerjee et al. (2021), and BBMM. The timeline of decision-

making in the model is as follows:

1. Every period, uninformed household i decides whether or not to put effort into

experimentation to learn about p∗
iH .22

2. To decide, they collect information on beliefs pH
jt−1 from their peers j ∈ I, formed in

the last period (some informed, some uninformed) and use DeGroot averaging to

calculate p̂H
it = ∑

j∈I Gijp
H
jt−1.

21It is worth noting that if we assume p∗
iH = p∗

H ∀i ∈ I (i.e., assume homogeneity in success probabilities)
the network ties become automatically helpful in making the right choice.

22Informed households already know their p∗
iH , so they do not need to make this decision.
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3. Based on p̂H
it , then they decide whether or not to put effort into experimentation to

get informed. The following rule represents this choice:

eit =


1 if

∑
s∈{H,L} p̂s

itπ
N(ωs) − ci − πT ≥ ηi

0 otherwise.

(3)

4. If they do not get informed (eit = 0), their new belief is formed to be equal to the

DeGroot average (pH
it = p̂H

it ), and next period they repeat from the step 1 above.

On the other hand, if they get informed (eit = 1), they now know p∗
iH and make

adoption decisions based on that, with pH
is = p∗

iH ∀s ≥ t. This implies that in any

period t, we can represent household i’s belief as:

pH
it = eitp

∗
iH + (1 − eit)p̂H

it . (4)

Informed households make the adoption decision following the rule:

Adoptit =


1 if

∑
s∈{H,L} p∗

isπ
N(ωs) − ci ≥ πT

0 otherwise.

(5)

2.3 Implications

In step 2, conditional on being informed, the household decides whether or not to adopt

the new technology. The household will adopt the new technology if and only if:

∑
s∈{H,L}

p∗
isπ

N(ωs) − ci ≥ πT ⇒ p∗
iHπN(ωH) + (1 − p∗

iH)πN(ωL) − ci ≥ πT

⇒ p∗
iH ≥ ci + (πT − πN(ωL))

(πN(ωH) − πN(ωL)) =: p̄∗
iH . (6)

That is, if and only if the true probability of success with the new technology (p∗
iH) is higher

than the threshold (p̄∗
iH), it is profitable for the household to adopt the new technology.

The threshold has the cost of switching to the new technology in the numerator and the net
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benefit of success (compared to failure) with the same technology at the denominator. The

cost of switching to the new technology is the sum of direct cost (ci) and the opportunity

cost of switching to the technology only to realize a lower payoff than the traditional

technology (πT − πN(ωL)). Thus, if and only if the probability of success with the new

technology is higher than the cost of switching as a fraction of associated benefits, it is

optimal for the household to adopt the technology.

Given this condition for adoption in step 2, in step 1, the household i will choose to get

informed at time t if and only if:

∑
s∈{H,L}

p̂s
itπ

N(ωs) − ci − πT ≥ ηi

⇒ p̂H
it πN(ωH) + (1 − p̂H

it )πN(ωL) − ci − πT ≥ ηi

⇒ p̂H
it ≥ ci + (πT − πN(ωL))

(πN(ωH) − πN(ωL)) + ηi

(πN(ωH) − πN(ωL)) =: p̄∗
iH + η̄i. (7)

The condition (7) considers the cost of effort (ηi). This is because the decision in step 1 is

regarding whether or not to put effort into experimentation to be informed. From (6) and

(7), it is clear that if for household i, pH
it is equal to p∗

iH , and they choose to get informed

in step 1, they will also adopt the technology in step 2. Conversely, if (6) is not satisfied,

then (7) should not hold if the diffusion of information is efficient. In other words, under

fully efficient information diffusion, only those adopting the technology in step 2 would

get informed in step 1. Thus, for these households, the following condition must hold:

p∗
iH ≥ p̄∗

iH + η̄i. (8)

Equation (8) implies that for households that end up adopting the technology, it must

be so that their true probability of success justifies the cost of seeking information (η̄i)

on top of their threshold probability of adoption (p̄∗
iH). Suppose for household j, that

p̄∗
jH + η̄j ≥ p∗

jH ≥ p̄∗
jH . Then, even if pH

jt is equal to p∗
jH , household j will not get informed

about the technology. Hence, they will not adopt the technology, even if it is profitable for

them to do so. This is due to the positive cost of experimentation (ηj). This feature is
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similar to the models of Chandrasekhar et al. (2018) and Banerjee et al. (2018), where the

social stigma of information-seeking stops some people from learning.

From the above discussion, it is clear that there are multiple possible equilibria for this

model. In particular, the equilibrium depends on the households’ initial beliefs. If everyone

except household i is informed, DeGroot averaging in this setup will help household i make

the right decision regarding putting effort into experimentation. The problem, however,

arises when most households are uninformed. The situation is particularly interesting

when pH
it ≈ 0 ∀it. This situation occurs when everyone believes with certainty that, for

them, the new technology yields a lower payoff than the traditional one. In such a scenario,

nobody will adopt the new technology even though it may be efficient for some to do so.

Network-based targeting interventions can help in such a scenario. We can exogeneously

give information to some households (seeds) to improve adoption. If household i gets

exogenously informed about their p∗
iH at period t, household j will update their p̂H

jt+1 if j

puts positive weight on i’s opinion. Subsequently, this will lead household k to update their

p̂H
kt+2 if k puts positive weight on j’s opinion, and so on. The outcome of this intervention,

a few periods down the line regarding the experimentation decision (and eventually the

technology adoption decision), will depend on the initial seeding strategy. In other words,

following the initial seeding strategy, the outcomes will vary depending on the path of

information diffusion. In such a scenario, for any given targeting strategy, simulations

help in attaining the outcomes. These outcomes will then help us understand the relative

effectiveness of different targeting strategies.

In the next section, I measure the relative performance of two types of such targeting

strategies (as compared to a random seeding strategy) using simulations. In doing so, I

consider the household networks facing the decision problem described in this section. I

focus on the scenarios where initially pH
it ≈ 0 ∀it, and thus the need for targeting. My

simulations provide testable implications that I take to the data in the subsequent sections.
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3 Simulations

In this section, I consider households modeled in the last section with initial pH
it ≈ 0 ∀it.

I first demonstrate the potential problem for a centrality-based seeding strategy, recom-

mended in the literature, with the example of a specific network. Then, I simulate multiple

networks to analyze whether the problem persists on average under different underlying

assumptions and compare the centrality-based seeding strategy with a probability-based

seeding strategy (defined below). I show that the relative performance of different targeting

strategies depends on the population’s heterogeneity level in benefits and whether the

networks are assortative in this heterogeneity.

3.1 An Illustrative Example

Figure 2: Distribution of True Probability within the network

I start with the example of a specific network of 10 households, depicted in Figure 2. The

households are heterogeneous concerning their p∗
iHs (represented by the nodes’ colors),

and the network is perfectly assortative in the p∗
iHs. The network has three types of

households: those with high p∗
iH (represented by dark red nodes, numbered 7-10), low p∗

iH

(represented by white nodes, numbered 1-4), and moderate p∗
iH (represented by light red

15



nodes, numbered 5 and 6). For this example, consider the threshold probability of learning

(i.e. (p̄∗
iH + η̄i) in (7)) to be 0.25 for every household. Thus, if p∗

iH of a household is more

than 25%, the household should get informed if they make their optimal choice. Given

the distribution of p∗
iHs shown in Figure 2, it turns out that it is efficient for 6 out of 10

households to get informed in this network (numbered 5-10).

Consider the scenario where, before any interventions, everyone believes their probability

of success with the new technology is zero (pH
it = 0 ∀it). Under such a scenario, even if it is

optimal for some households to adopt the technology, they do not. An intervention is then

required to improve adoption. The objective behind such an intervention is to ensure that

the households that would have adopted the technology under perfect information decide

to adopt it. At the same time, for efficiency, we want to ensure that the households that

should not adopt the technology under perfect information optimally choose not to put

effort into experimentation to get informed about it. Thus, we can measure the efficiency

of a seeding strategy κ as:

Efficiencyκ = InformedT
κ

InformedT︸ ︷︷ ︸
Aκ

− InformedF
κ

UninformedT︸ ︷︷ ︸
Bκ

(9)

Here InformedT denotes the number of non-seed households that should have put effort

into experimentation to get informed, as they would have adopted the technology under

perfect information (i.e., they satisfy equation (8)). Additionally, InformedT
κ captures the

number of non-seed households that get informed within some periods of implementing the

targeting strategy κ, among those households in InformedT . Thus, the term Aκ represents

the informed non-seed households as a fraction of non-seed households that should have

gotten informed under perfect information, given the targeting strategy κ. Thus, a higher

value of this fraction indicates a more successful targeting strategy. The term Bκ, on the

other hand, represents the fraction of non-seed households that are mistargeted by the

targeting strategy κ. UninformedT denotes the number of non-seed households that should

not put effort into experimentation to get informed and InformedF
κ captures the number of
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non-seed households that end up getting informed among those households given targeting

strategy κ. Thus, a higher value of Bκ indicates a less successful targeting strategy.

To understand the terms in the efficiency measure more clearly, consider the network in

Figure 2. If households numbered 5 and 6 are the seeds for the strategy κ, we are interested

in understanding the efficiency of κ for diffusing knowledge among the other households.

As four other households (numbered 7-10) should put effort into experimentation to get

informed under optimal choices, InformedT = 4. Similarly, the other four households

(numbered 1-4) should not put effort into experimentation to get informed under optimal

choices, implying UninformedT = 4. Now, consider the scenario where the households

numbered 1, 8, 9, and 10 decided to put effort into experimentation for getting informed,

given the same seeds for strategy κ. If that is true, then InformedT
κ = 3 since 8, 9, and 10

are among the households that should get informed. On the other hand, InformedF
κ = 1 as

the household number 1 got mistargeted. In this case, we would have Aκ = 3/4, Bκ = 1/4,

and Efficiencyκ = 3/4 − 1/4 = 1/2.

My analysis focuses on two types of targeting strategies: centrality-based and probability-

based. Similar to BBMM, I seed only two households per network. I consider a centrality-

based targeting strategy as the existing literature supports in favor (Banerjee et al.,

2013), and because BBMM recommends centrality-based targeting for the diffusion process

described here.23 I consider probability-based targeting as an alternative to centrality-

based targeting. The probability-based targeting strategy is to seed households with the

highest expected benefits with the new technology (i.e., the highest p∗
iHs in the network).

These households are more likely to adopt a technology with a homogeneous cost of

experimentation for everyone. Hence, we can think of them as the early adopters here

(definition of early adopters similar to Catalini and Tucker, 2017). The rationale for

considering probability-based targeting as an alternative to centrality-based targeting

is twofold. First, it is the extreme opposite of the centrality-based targeting strategy.
23The diffusion process described in this paper falls under the category of complex diffusion. Complex

diffusion models assume that information diffuses to an agent only if a certain threshold of the agent’s
connections gets informed. A more detailed description of different models of diffusion and their use in
Development and Agricultural Economics literature can be found in Breza et al. (2019) and Barnett-Howell
and Mobarak (2021).
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Whereas the centrality-based approach relies on households similar to the average for

diffusion, the probability-based strategy does the opposite by focusing on the households

more likely to adopt a technology than the average. Second, there is a debate in the

existing literature regarding whether opinion leaders should be somewhat superior to their

followers for the effective diffusion of new knowledge (Feder and Savastano (2006); Miller

and Mobarak (2015)). Through the lens of this debate, probability-based targeting seems

to be a natural alternative to centrality-based targeting.

The centrality-based targeting strategy is to seed households central to the network.

I consider centrality in terms of the eigenvector centrality measure. The results of my

analysis are robust to a different measure of centrality (consult Appendix G for detailed

results). Eigenvector-based centrality measures represent a household’s connectivity

to other households, considering the importance of their connections in terms of their

respective connections in a recursive manner. A formal definition of different centrality

measures can be found in Appendix A.24 I use the eigenvector centrality measure for

two reasons. First, there is evidence in the existing literature in favor of targeting using

eigenvector-based measures of centrality (e.g., Banerjee et al. (2013); Beaman et al.

(2021a)). Second, for my empirical analysis, I use eigenvector centrality as the primary

measure of centrality.

Figure 3 captures the initial seeding for the network from Figure 2 when everyone

believes their p∗
iH to be zero, thus the need for network-based targeting. In Panel A,

seeds are selected based on centrality. Here, I seed households numbered 5 and 6, i.e., I

consider these households to be exogenously informed about their p∗
iH in the first period

of policy intervention. Households 5 and 6 are selected as the seeds because they are the

most central households in this network. We can verify that these households are the

central-most in this network by counting the number of connections per node. Households

5 and 6 are each connected to five households, whereas every other household in this

network has three links each. Additionally, we can observe that both households have a

moderate value for p∗
iH . This feature is not surprising given that central households are the

24For a more detailed description of network centrality measures, consult section 2.2.4 of Jackson (2010)
and Bloch et al. (2021).
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most connected in the network, and the network is highly assortative in the p∗
iHs. Thus,

the central households represent the average p∗
iHs in the network, not the ones with a high

p∗
iH . This feature has consequences for the final performance of this targeting strategy.

Panel A: Centrality-Based Panel B: Probability-Based

Figure 3: Initial Seeding based on Centrality and Probability

Panel B of Figure 3 captures seeding with probability-based targeting. The seeded

households are the ones numbered 8 and 9. These households are selected as they have

the highest p∗
iHs among all the households in this network. I can pick these households in

simulations, as I can perfectly observe the households’ p∗
iHs here. In practice, however,

we may not have the necessary information to identify these households. In Appendix

E, I discuss my strategy for estimating households’ p∗
iH for my empirical analysis. The

households selected following a probability-based targeting are, by definition, representing

the early adopters in the network. Thus, these households may not be well-connected in the

network. This feature has consequences for the final performance of the probability-based

targeting strategy.

After the initial seeding, I let the diffusion occur over three periods, according to the

diffusion process described in the last section. The performance of both targeting strategies

at the end of the three periods is in Figure 4. In this particular scenario, probability-based

seeds perform better than their centrality-based counterparts. Centrality-based seeds

managed to convince no additional households to get informed. On the other hand,

19



probability-based seeds convinced everyone else that satisfies equation (8) for this network

to put effort into experimentation for getting informed. Using the efficiency measure

defined in equation (9), I can score centrality-based targeting 0, while probability-based

targeting scores 1. Therefore, the centrality-based targeting strategy fails in this scenario.

It is also worth noting that in both types of targeting, in this scenario, the term Bκ in (9)

takes 0 as there is no mistargeting.

Panel A: Centrality-Based Panel B: Probability-Based

Figure 4: Performance of seeds after three periods

In this example, the p∗
iHs are highly heterogeneous, and the network connections are

highly assortative in p∗
iH . In what follows, I first study non-assortative networks and

understand the consequences of heterogeneity of p∗
iHs on the success of different targeting

strategies. Then, I allow the networks to be perfectly assortative and vary the degree of

heterogeneity in p∗
iHs. For these analyses, I simulate 200 networks with 30 households to

assess the effectiveness of different targeting strategies on average.25 As discussed above,

the main focus is on centrality-based and probability-based targeting strategies. I also use

a randomized targeting strategy (where seeds are selected randomly) for comparison.
25Appendix G presents the robustness of my results for networks with 20 and 40 households.
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3.2 Targeting Homogeneous vs. Heterogeneous Networks

Let me focus on the consequences of heterogeneity in p∗
iHs for different network-based

targeting strategies. Column (1) of Table 1 presents simulation results for networks

with homogeneous p∗
iH = p∗

H . These networks are non-assortative in the probability.26

Centrality-based targeting performs better than probability-based and random targeting

for these networks.

I should note a few things in this regard. First, in networks with homogeneous p∗
iH = p∗

H ,

everyone should adopt or not adopt the technology given the same threshold probability

of adoption. For the results presented here, I assume this threshold to be 0.4 for all

households (Appendix G includes robustness of my results concerning change in this

value). Thus, if p∗
H ≥ 0.4, everyone should adopt the technology under efficient diffusion

of information. Therefore, everyone optimally decides not to adopt the technology for a

subsection of the simulated networks, where the randomly drawn p∗
H < 0.4. In terms of

equation (9), these networks have InformedT = 0. Similarly, for other simulated networks,

where the randomly drawn p∗
H ≥ 0.4, I have UninformedT = 0. As either InformedT or

UninformedT is zero for homogeneous networks, I cannot use Efficiencyκ to measure the

efficiency of the targeting strategy κ. Instead, I use the first term (Aκ) of Efficiencyκ for

that purpose, which leads to dropping networks with p∗
H < 0.4 from the average efficiency

score calculation. To maintain parity with the number of observations in other columns,

I increase the number of simulated networks to 400 for homogeneous networks. Finally,

since everyone has the same p∗
iH = p∗

H in a homogeneous network, the probability-based

targeting reduces to systematically picking the first pair of households in the networks as

the seeds.

In column (2) of Table 1, I allow the networks to be heterogeneous concerning p∗
iHs while

remaining non-assortative. The efficiency scores become close to zero for all targeting

strategies. The result aligns with my prediction in Figure 1. It is due to the diffusion

being dependent on the p∗
iHs and the network ties not accounting for the heterogeneity in

these probabilities. It is worth noting that the result is due to a lower value of Aκ and a
26For a homogeneous network, assortivity property will lead to everyone being connected to everyone

else.

21



Table 1: Efficiency Scores for Simulations using Different Targeting Strategies

Homogeneous Heterogeneous
Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)
Eigenvector Centrality-Based Mean 0.455 -0.003 0.412

Variance 0.223 0.002 0.228

Probability-Based Mean 0.189 -0.040 0.956
Variance 0.125 0.023 0.004

Random Mean 0.000 0.000 0.438
Variance 0.000 0.000 0.228

Observations† 239 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with
heterogeneous probabilities. Upon generation of the true probabilities, some networks are dropped as they
contained 0% of informed households under full efficiency. Columns (2) and (3) use the efficiency measure
Efficiencyκ to measure the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ

for that purpose. All networks contain 30 households, and the threshold probability of learning is assumed to
be 0.4 for all of them. For assortative networks, each pair of households having a success probability difference
of 0.1 or less is assumed to be connected.

higher value of Bκ for the measure in equation (9). Thus, targeting fails to reach agents

that should adopt and mistargeting increases. Keeping the heterogeneity at the same level,

I allow the networks to be assortative in the p∗
iHs for column (3). The effectiveness of all

targeting strategies increases as a result. This result is because network ties are based on

heterogeneity in p∗
iHs. As a result, we always reach agents with p∗

iHs similar to the initial

seeds. Although seeds vary in effectiveness depending on their selection, all types perform

better than they did for non-assortative networks.

More importantly, for column (3), probability-based seeds perform better than centrality-

based seeds. Both of them perform better than the random seeds. By design, probability-

based seeds target the population most likely to adopt due to the highest p∗
iHs. On the

contrary, centrality-based seeds target the most influential agents in their connections.

With a high level of heterogeneity in p∗
iHs (as for columns (2) and (3)), assortative networks

imply that centrality-based seeds represent agents with average p∗
iHs. Thus, these agents

are less effective than probability-based seeds in reaching the agents having the highest

p∗
iHs. In the following sub-section, I study assortative networks with varying degrees

of heterogeneity in p∗
iHs. The objective is to understand, for different network-based

strategies, the role of such heterogeneity for perfectly assortative networks.
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3.3 Targeting Assortative Networks with Varying Heterogeneity

I consider the agents to be connected for perfectly assortative networks if their p∗
iHs are

within a difference of 0.1. Following the notation used in Section 2, this implies δ = 0.1. I

present the robustness of my results for different values of δ in Appendix G.27 Figure 5

presents the performance of different targeting strategies with assortative networks over

varying degrees of heterogeneity in p∗
iHs. Panel A of the figure presents the results in linear

scale. Panel B shows the same results in a logarithmic scale for better visualization of

efficiency scores with lower levels of heterogeneity.

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure 5: Efficiency scores over increasing levels of heterogeneity (with assortative networks)

As we can see, the performances of different targeting strategies improve with an

increase in heterogeneity. As heterogeneity approximates to zero (i.e., almost converges

to homogeneity), all targeting strategies approach an efficiency score of 0. The result is

not surprising. For low levels of heterogeneity, everyone is connected in an assortative

network. Thus, all three types of targeting reach everyone in the population, leading to

a high value of both Aκ and Bκ. Thus, the value of Efficiencyκ converges to zero for all

targeting strategies. As heterogeneity increases, we start observing the differences between

the performances of different targeting strategies.
27I also show in the Figure G.8 of Appendix G that for intermediary levels of δ, the results do not vary

much for a given level of heterogeneity in p∗
iHs.
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For lower levels of heterogeneity, centrality-based and probability-based targeting per-

form very similarly and slightly better than the random targeting strategy. Thus, for

low heterogeneity in p∗
iHs, centrality-based targeting does not suffer (compared to other

targeting strategies) for not accounting for this heterogeneity in its design. However, as

heterogeneity increases, the negative effect of such heterogeneity on the performance of

centrality-based targeting becomes apparent. As a result, probability-based targeting per-

forms substantially better as heterogeneity increases than its centrality-based counterpart.

Beyond a certain level of heterogeneity, the simulated networks converge to the maximum

level of heterogeneity, and the average efficiency scores also converge to their maximum.

Let me now explain the results with the highest levels of heterogeneity. As the hetero-

geneity approaches its peak, everyone in the networks has a p∗
iH of either 0 or 1. Given

the assortative nature of these networks, everyone with p∗
iH = 0 is connected. Similarly,

everyone with p∗
iH = 1 is connected. Depending on the number of households with 0 and 1

p∗
iHs, centrality-based targeting reaches either one of the groups. If more households have

a p∗
iH of 1, centrality-based targeting reaches all households with a p∗

iH of 1. Conversely,

centrality-based targeting reaches all households with a p∗
iH of 0 if more households have a

p∗
iH of 0. Given the random nature of the simulations, either of these cases happens half

of the time. Thus, centrality-based targeting converges to an efficiency score of around

50%.On the contrary, probability-based targeting always reaches households with p∗
iH = 1,

leading to its convergence to an efficiency score of around 100%.

These results show that centrality-based targeting performs worse than probability-based

targeting in reaching households with the highest p∗
iH in networks assortative in these

probabilities. However, the level of heterogeneity in p∗
iH matters in this comparison. For

low levels of this heterogeneity, both strategies perform similarly. The difference between

them becomes prominent only when the heterogeneity increases beyond a certain threshold.

4 Empirical Strategy

My next objective is empirically testing the following hypotheses derived from the theoret-

ical framework using simulations.
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Hypotheses: As the level of heterogeneity in terms of the benefits of a new technology

increases:

1. central seeds perform worse in terms of diffusing that technology.

2. probability-based seeds perform better in terms of diffusing that technology.

Hypothesis 1 does not require networks to be assortative in the heterogeneity in benefits.

It focuses on the underlying condition for the failure of centrality-based targeting in a

complex diffusion process. As I show in Table 1, even with non-assortative networks,

I expect the hypothesis to be true as long as the heterogeneity in benefits affects the

diffusion process. On the other hand, Hypothesis 2 requires the assortativity property to

be true. In my simulations, under the assumption of perfectly assortative networks, I show

that probability-based seeds perform better than their centrality-based counterparts as

heterogeneity increases. In reality, the networks are less likely to be perfectly assortative

and more likely to be probabilistically assortative (where two agents with similar success

probabilities are more likely to be connected, similar to the definition of homophily in

Golub and Jackson (2012a,b,c)). Unfortunately, I do not observe network connections

in the data I use in this study. As a result, I cannot assess these networks’ degree of

assortativity. However, accepting Hypothesis 2 would mean the existence of some degree

of assortativity in the networks that we can use for policy purposes.

4.1 Data Sources

For my empirical analysis, I use the replication data from BBMM together with the survey

data from AESTAS conducted by IFPRI. I briefly describe these datasets in this subsection

before describing my identification strategies next.28

4.1.1 Replication data of BBMM

To promote Pit Planting (PP) for Maize farmers in Malawi, BBMM conducts a Randomized

Controlled Trial (RCT) in 200 villages from 3 Malawian districts with semi-arid climates.
28A detailed description of these data sources are in Appendix C.
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In each village, the researchers selected two seed farmers and trained them on PP. The

criteria for the selection of these seed farmers were decided at the village level after the

villages were randomly allocated into one of the four treatment arms:

1. Complex Contagion Arm: where the seed farmers are selected to maximize

diffusion of information, assuming complex diffusion to be the underlying diffusion

process.

2. Simple Contagion Arm: seed farmers are selected to maximize diffusion of

information, assuming simple diffusion as the underlying diffusion process.29

3. Geographic Arm: seed farmers are selected to maximize the diffusion of information

using geographic networks.

4. Benchmark Arm: seed farmers are selected by extension agents without using any

network data.

BBMM uses simulations with baseline network information to identify two seeds optimal

for improving the diffusion of information in all 200 villages, given an underlying diffusion

process (complex contagion, simple contagion, and geographic). Once the villages were

randomly allocated to one of these three treatment arms, they selected two households

as seeds in a village, depending on the treatment arm allocated. For example, if the

village got assigned to the Complex Contagion Arm, they selected as seeds the households

identified in the simulation as the ones optimizing the diffusion of information in that

village following a complex contagion diffusion process. If the village got allocated to the

Benchmark Arm, the extension agents would select seed households instead. After training

these seed farmers, they collected household survey data on farming techniques, input use,

yields, assets, and other characteristics for a random panel of approximately 30 households

per village (including the seed farmers). This led to the data on around 5600 households

from the 200 villages for 2-3 survey rounds.

BBMM assumes the information of PP to be equally beneficial to all households in a

village, with the heterogeneity in adoption being explained by differences in the adoption
29In a simple diffusion process, the information diffuses from one household to its connections with a

random probability.
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costs. In this study, I relax that assumption and consider heterogeneity in benefits and

its consequences on the performance of their seeding strategies. They collected detailed

data on household-level adoption decisions over multiple survey rounds, which I use to

calculate the dependent variables for my analysis. Their replication data also includes

information on household-level measures of centrality used to select seeds under different

treatment arms, which I use to assess the centrality of seed households in their experiment.

Additionally, my analysis requires the surveyed households’ ex-ante probability of adoption.

This information is not available in their replication data as they did not consider the

benefits of adoption to be different across households. For this purpose, I turn to the

AESTAS dataset.

4.1.2 AESTAS data

AESTAS is a nationally representative panel household survey conducted by the Inter-

national Food Policy Research Institute (IFPRI) to monitor Malawi’s lead farmer (LF)

program. 30 The data was collected in waves 1 in 2016 and 2 in 2018. The publicly

available version of the survey dataset contains information from household interviews,

lead farmer interviews, and community interviews. For this study, I use the data collected

through household interviews, which collected data on technology adoption and awareness,

exposure to different technologies, access to extension services, and socioeconomic and

demographic characteristics. Around 3000 households were surveyed in wave 1, with 2880

re-surveyed in wave 2 (with the attrition rate being around 4%).

Two types of technology adoption information are available in the data:

1. Reported adoption for a list of pre-determined technologies and practices. This list

focuses on both agricultural and food processing practices.

2. Reported plot-level usage for pre-determined agricultural technologies and practices.

This information helps me calculate adoption indices crucial to my analysis (see Appendix

D for details on the construction of these indices). I use these indices as proxies for the

probability of adoption.
30Consult Khaila et al. (2015) for details on the lead farmer program.
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4.2 Identification Strategy

The main empirical results of this study use the non-experimental village-level variations in

the BBMM data. I additionally report the robustness of my results using their experimental

variation in the Appendix F. Contrary to BBMM’s focus on comparing the effectiveness of

different centrality-based targeting strategies, I focus on assessing the efficacy of centrality-

based targeting vis-à-vis probability-based targeting for varying degrees of population

heterogeneity.

In particular, given the selection of seeds in the BBMM experiment, I calculate the seeds’

average centrality and probability of adoption and use them in the following regression:

Outcomevt = β0 + β1Centralityv + β2Probabilityv + β3Heterogeneityv (10)

+ β4Centralityv × Heterogeneityv + β5Probabilityv × Heterogeneityv + λXv + ζt + ϵvt.

Outcomevt denotes some adoption-related outcome for village v at time t. Like BBMM, I

focus on the outcomes in years 2 and 3, as they argued that the outcome variables start

reflecting the diffusion of information from year 2 onwards. I defer the discussion on these

outcome variables to the next section. Centralityv represents the average centrality of the

seeds for village v, at the baseline. Probabilityv represents the average adoption probability

for the seeds in village v at the baseline, and Heterogeneityv is the baseline village-level

heterogeneity in adoption probability. Following my hypothesis, I expect β4 < 0 and

β5 > 0. I control for baseline village-level characteristics (Xv) and year-fixed effects (ζt).

The random error of the regression is captured by ϵvt.

I calculate Centralityv using the seed households’ eigenvector centrality at the baseline.

The centrality measures are pre-calculated by BBMM and available in their replication

data. However, the probability of adoption information is unavailable in the BBMM

replication dataset as they do not consider households heterogeneous in the adoption

benefits. I use the survey data from AESTAS to predict an adoption index conditional on

demographics observed in both datasets.31 Then, for the BBMM sample at the baseline,
31The details of this exercise are in Appendix E.
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I calculate an out-of-sample prediction of this adoption index conditional on the same

observable demographics.32 I use this predicted adoption index as a proxy for the BBMM

households’ adoption probability.33 Probabilityv is the average of this predicted adoption

index for the seed households at the baseline. On the other hand, Heterogeneityv is the

coefficient of variation of the same baseline predicted adoption index at the village level,

capturing village-level heterogeneity in the predicted adoption index. It is important to

note that both the probability of adoption and the related coefficient of variation are

proxied by variables that are calculated conditional on observable demographics. These

variables are, therefore, not particular to any technology. Instead, they represent whether

the households are likely to adopt any new technology conditional on their observable

characteristics.

The outcome variables (described in the next section), also used in the village-level

analysis of BBMM, exclude the seeded households. I assume that the seed household

characteristics (i.e., Centralityv and Probabilityv in regression (10)) are exogenous to the

outcome variables. The assumption seems reasonable as the village-level outcomes do

not consider the seeded households. Additionally, I assume that conditional on village

level controls, Heterogeneityv is also exogenous in (10). However, as long as Centralityv

and Probabilityv remain exogenous, no assumption is needed regarding the exogeneity of

Heterogeneityv for identifying the coefficients of interest β4 and β5.

Endogenous Centralityv in (10) implies unobserved village-level characteristics correlating

with the network positions of the seed households and the village-level outcomes calculated

excluding the seed households. For example, there may be unobserved social learning

correlating with the network positions of the seeds and the adoption-related outcomes.

However, this is more likely to be true for the household-level outcomes. At the village

level, unless there is a village-level learning process correlating with the seed households’

network positions, Centralityv should be exogenous in (10). Similarly, the village-level

unobserved characteristics affecting adoption-related outcomes should not be related to the
32A comparison of the BBMM and AESTAS samples are also in Appendix E.
33In the Appendices, I also provide the robustness of my results concerning a usage index (that uses

the reported plot-level usage of technologies, instead of the said adoption of the same) as the proxy for
households’ adoption probability.
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seed’s adoption probability. As Probabilityv represents the average adoption probability of

the seed households, it should also be exogenous in (10).34 However, since I cannot verify

these identifying assumptions, I check the robustness of my results using the experimental

variations in the BBMM data that use weaker identifying assumptions. The Appendix F

provides details.

Finally, not accounting for the treatment status in the regression can lead to omitted

variable bias if there is some measurement error in calculating Centralityv, as the exper-

imental design ensures that some villages will have more central seeds than others. In

Appendix G, I check the robustness of my results by including the treatment dummies.

As my results remain almost identical, I present them without the treatment dummies in

the following section.

5 Results and Discussion

5.1 Descriptive Statistics

Table 2 describes key baseline characteristics in the BBMM sample. The last column

of this table represents overall village-level non-experimental variations. I exploit this

variation in the regression specification (10). The first four columns of the table represent

the within-treatment group variations. Regression specification (12) in Appendix F uses

the experimental variations between these four groups.

The first two rows present the outcome variables of my analysis, which are the same ones

used in the village-level analysis of BBMM. Adoption Rate (PP) captures the proportion

of typical farmers per village that adopted pit planting in each agricultural season. Here,

typical farmers correspond to the farmers that were not selected as seed or shadow farmers in

the experiment.35 Any Non-Seed Adopters (PP) is a dummy variable that captures whether
34An example of a village-level unobserved learning process correlating with the seed households’ network

positions (or adoption probability) would be when the seeds with higher centrality (or probability) are
more likely to broadcast information to the masses affecting village-level adoption. Not controlling for
this information will make Centralityv (or Probabilityv) endogenous in (10).

35Shadow farmers are seed farmers chosen by the BBMM simulation, assuming some underlying diffusion
model. However, they were not selected as seeds in the BBMM experiment because their villages were
assigned to receive seeding based on a different diffusion model.
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Table 2: Baseline Village-level Sample Characteristics

Treatment Status
Variable Benchmark Complex Simple Geo Overall
Adoption Rate (PP) 0.018 0.030 0.029 0.029 0.026

(0.035) (0.063) ( 0.060) (0.077) (0.060)
Any Non-Seed Adopters (PP) 0.300 0.340 0.320 0.420 0.345

(0.463) (0.479) (0.471) (0.499) (0.477)
Eigenvector Centrality of Seeds† 0.178 0.235 0.187 0.129 0.182

(0.090) (0.077) (0.096) (0.090) (0.096)
Predicted Adoption Index of Seeds‡ 0.110 0.114 0.101 0.082 0.101

(0.034) (0.036) (0.041) (0.025) (0.036)
CV of Predicted Adoption Index 0.389 0.378 0.379 0.366 0.378

(0.069) (0.077) (0.075) (0.062) (0.071)

Observations 50 50 50 50 200

Notes: † Contains 44 observations for the benchmark treatment group, 49 observations for the other
treatment groups. ‡ Contains 48 observations for the complex treatment group. Seed-level measures
are calculated using the average of two seeds, whenever the information on both seeds are available.
Otherwise they reflect the information for one seed. Coefficient of Variations (CV) are calculated at the
village level for the whole village. Adoption Rate and Any Non-Seed Adopters are calculated excluding
seed or shadow farmers in a village.

the villages had at least one non-seed farmer adopting pit planting in an agricultural

season. The baseline data suggest an adoption rate of around 2-3% across treatment arms.

Also, only 30-42% villages had at least one non-seed farmer adopting pit planting in the

baseline. These numbers suggest low adoption of pit planting in the baseline, providing an

ideal setting to test the predictions of my theoretical analysis. Through the lens of my

theoretical framework, the pessimism regarding the prospect of pit planting was responsible

for the low adoption of pit planting in the baseline. Hence, this is a setting that calls for

network-based targeting.

The following two rows of table 2 focus on presenting seed-level explanatory variables of

my analysis. I calculate these variables given the seeds chosen by BBMM. In particular,

the values represent an average for two seeds whenever the information on both seed

households is available (for 138 villages). Otherwise, it represents the only seed for which

the data is available (for 53 villages).

To calculate the Eigenvector Centrality of Seeds, I use the eigenvector centrality values

that are pre-calculated and available in the BBMM replication dataset.36 By the design of
36Formal definition of eigenvector centrality can be found in Appendix A.
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the experiment, complex seeds have the highest average centrality. BBMM argues that it

is due to the optimality of seeding only the most central households when the underlying

diffusion process is of complex contagion. Similarly, they expect the simple seeds to have

relatively less average centrality than complex seeds as it is optimal to seed one central

and one peripheral household when the underlying diffusion process is of simple contagion.

BBMM also argue that geo seeds should be less central as they have less than average

land by design (a measure of less than average wealth) and hence are less likely to be

well connected. These patterns are indeed what I observe in the baseline. In terms of the

average eigenvector centrality of the seeds, the simple seeds are not statistically different

from the benchmark seeds. However, complex and geo seeds are statically different from

the benchmark (at 1% and 5% levels of significance, respectively).

I use the predicted adoption index as the proxy for the adoption probability. Complex

and benchmark seeds have the highest adoption probabilities, followed by simple seeds.

The geo seeds have the lowest baseline probability of adoption. No statistically significant

differences exist between benchmark, complex, and simple seeds. However, geo seeds are

statistically different from their benchmark counterparts (at a 1% significance level).

The final row of table 2 presents the village-level heterogeneity in adoption probabilities.

I measure these using the coefficient of variation (CV) of adoption probability proxies

at the village level. In terms of these measures, all other treatment villages have lower

heterogeneity in adoption probability than the benchmark villages. However, the geo-

treatment group is the only one having significantly less heterogeneity than the benchmark

group (at the 10% level). The differences are statistically insignificant for complex and

simple treatment villages.

Before proceeding to my main empirical results in the following sub-section, let me

focus on Figure 6. This figure presents the outcome variables over varying degrees of

village-level heterogeneity, where the village-level heterogeneity is proxied by the CV of

the predicted adoption index. Here, I categorized the seeding strategy based on the seeds’

average centrality and adoption probability. For this figure, I define centrality-based seeds

as the seed household(s) with higher than the median average eigenvector centrality at
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baseline. Similarly, probability-based seed households (s) are defined to have higher than

the median average adoption probability at baseline. Thus, following this classification,

seed household(s) selected in the BBMM experiment can fall under four categories: both

centrality-based and probability-based, only centrality-based, only probability-based, and

none.37 Based on my simulations, I expect the effectiveness of centrality-based seeds to

decrease as village heterogeneity increases. Similarly, I anticipate the performance of

probability-based seeds to improve as village heterogeneity increases. However, I expect

these patterns to emerge only in the years 2 and 3 after the interventions. In the first

year, after the seeds received training, there was not enough time for diffusion for similar

patterns to be evident.38

Panel A: Adoption Rate

Year=1 Year=2 Year=3

Panel B: Any Non-Seed Adopters

Year=1 Year=2 Year=3

Figure 6: Outcomes for Different Seeding Strategies with respect to Village Heterogeneity

This pattern is what I observe. In years 2 and 3, as village-level heterogeneity increases,

the performance of centrality-based seeds decreases compared to their probability-based
37Average village level correlation between the households’ centrality and adoption probability, calculated

at the baseline, is around 0.3. This is robust to using different centrality and adoption probability measures.
Thus, a centrality-based seeding strategy should lead to a mostly different set of seed households than a
probability-based strategy.

38Training for the seed households took place just a few months before the household survey in year 1.
Thus, similar to BBMM, my regression results focus on the effect on the outcome variables from years 2
and 3.
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counterpart. The opposite is true for probability-based seeds compared to centrality-based

seeds. On the contrary, I notice the opposite pattern in year 1 for the adoption rate.

However, for the percentage of villages with non-seed adopters, I observe that in the first

year, the gap between centrality-based and probability-based seeds is closing with an

increase in village-level heterogeneity. Although, the centrality-based seeds remain the

more successful for all levels of village heterogeneity.

Although informative, the descriptive figures do not account for village-level heterogeneity

in other variables. In defining the centrality-based and probability-based seeds as dummy

variables, Figure 6 also fails to capture the entire village-level variations of these seeds

regarding their centrality and probability measures. In the following sub-section, I present

the main results of my analysis that test my hypotheses more formally.

5.2 Main Results

Table 3 presents the main results of my analysis. Here, the main coefficients of interest are

those corresponding to the interactions of Heterogeneityv, with Centralityv and Probabilityv.

Following my hypotheses, I expect the coefficient of Centralityv × Heterogeneityv to be

negative and the coefficient of Probabilityv × Heterogeneityv to be positive.

Columns (1) and (2) present the results for the adoption rate, with and without the

village-level controls. Here, both coefficients of interest are of the desired sign and highly

significant. The results show that one standard deviation increase in eigenvector centrality

for a completely homogeneous village is associated with a 1.47-1.88 standard deviation

increase in the adoption rate. However, for villages with heterogeneity at the level of

baseline mean, the effect drops to an increase of only 0.18-0.29 standard deviations.

Similarly, one standard deviation increase in predicted adoption decreases the adoption

rate by 1.28-1.78 standard deviations for a homogeneous village. But for villages with

heterogeneity at the level of baseline mean, the effect drops to a decrease of 0.2-0.3 standard

deviations only.

The results for Any Non-Seed Adopters are in columns (3) and (4), with and without

the village-level controls. Although the coefficients of interest are of the desired sign,
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they are mostly insignificant. The results show that one standard deviation increase in

eigenvector centrality for completely homogeneous villages leads to a 0.24-0.25 standard

deviation increase in the probability of having at least one non-seed adopter. However, for

villages with heterogeneity at the level of baseline mean, the effect drops to 0.02 standard

deviations increase. On the other hand, one standard deviation increase in the predicted

adoption index is associated with a 0.25-0.61 standard deviation decrease in the probability

of having at least one non-seed adopter for a homogeneous village. For villages with

heterogeneity at the level of baseline mean, however, the effect drops to a decrease of

0.04-0.08 standard deviations.
Table 3: Village level Regression 1 of Adoption Outcomes (Pit Planting)

Adoption Rate Any Non-Seed Adopters
Variables (1) (2) (3) (4)
Eigenvector Centrality of Seeds 1.173** 0.917* 1.181 1.235
(=Centralityv) (0.581) (0.467) (1.439) (1.332)
Predicted Adoption Index of Seeds -2.973** -2.140 -8.019** -3.344
(=Probabilityv) (1.467) (1.318) (3.257) (3.233)
CV of Predicted Adoption Index -0.296 -0.157 -0.928 0.506
(=Heterogeneityv) (0.208) (0.214) (1.079) (1.053)
Centralityv × Heterogeneityv -2.625** -2.131** -2.851 -3.299

(1.324) (1.066) (3.777) (3.562)
Probabilityv × Heterogeneityv 6.715** 4.762* 18.484*** 7.562

(3.131) (2.796) (6.997) (7.073)

Village-level Controls No Yes No Yes

Observations 324 324 324 324
R-squared 0.080 0.180 0.049 0.169

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All
regressions include a constant term and year fixed effects. Village-level controls include percentage
of village using pit planting at baseline, percentage of village using compost at baseline, percentage
of village using fertilizer at baseline, village size, the square of village size, and district fixed
effects.

These results show that for homogeneous villages, seeding central households leads to

improvements in adoption. Existing literature recognizes the role played by central agents

in improving diffusion and subsequent adoption of a product. BBMM uses the same data

to show that more central seeds cause higher adoption. Seeds’ centrality is one of the main

reasons for improved adoption of a microfinance product in India by Banerjee et al. (2013),
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and improved take-up of an insurance product in China by Cai et al. (2015). I add to this

literature by providing evidence that the positive effect of seeds’ centrality decreases as

the target population becomes more heterogeneous. In addition, I show evidence in favor

of an alternative probability-based seeding strategy to work better in such a scenario.

6 Summary and Concluding Remarks

I focus on network-based targeting strategies for improving technology adoption when

a new technology has more benefits to some agents than others. This heterogeneity in

benefits can be due to the agents differing in their education, skills, and ability, which

affect how much they can learn about and use the new technology in practice. We can

also attribute the heterogeneity to the agents’ input choices and their access to other

technologies. In particular, I assume that this heterogeneity in benefits directly impacts

the diffusion of information regarding the benefits of the new technology. This assumption

deviates from the existing literature that considers information diffusion to depend on

existing social ties only. I present a model that helps formalize such a scenario, adding to

the theoretical literature that considers households homogeneous in what they need to

learn about new technologies. I use simulations, building on the structure of my theoretical

model, to generate testable hypotheses on the performance of different network-based

targeting strategies.

Following my simulation results, I hypothesize that the relative performance of different

targeting strategies depends on the population heterogeneity in terms of the expected

benefits of adopting a technology. In particular, I expect centrality-based targeting

to perform worse as the heterogeneity increases, but targeting based on the adoption

probability to perform better if the network is highly assortative in terms of the benefits

from the technology. To test my hypotheses, I use the replication data of BBMM collected

from Malawi. To generate variation in the BBMM sample in the benefits of a new

technology, I use the AESTAS dataset also collected from Malawi. My results lend support

in favor of my hypotheses. Exploring non-experimental village-level variations, I show

that the positive effect of the seed households’ centrality on the adoption of pit planting
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decreases with an increase in village-level heterogeneity in terms of adoption probability.

Simultaneously, the negative effect of the seed households’ adoption probability decreases

with an increase in village-level heterogeneity. Although weaker, I find similar results

when I shift my focus to exploring the experimental variations of BBMM (reported in the

Appendix F).

The main challenge in targeting based on the adoption probability is that the adoption

probabilities depend on the benefits realized only after the adoption. I attempt to solve this

issue by using additional data to predict adoption probability conditional on observable

demographics. A better approach would be to collect more information on the same

households making the adoption decisions. For that purpose, a randomized controlled trial

that randomly allocates regions into a centrality-based, probability-based, and random

seeding strategy would be more suitable. A randomized controlled trial of such a nature

could also help in disentangling the effects of centrality and probability of seeds. These

and a more structural approach can help separately identify the performances of targeting

strategies discussed here. These are exciting avenues for future research.

For policy, my results suggest that network-based targeting may require more than

identifying central households within a social network. More specifically, I argue for the

need to understand possible population heterogeneity in benefits. This recommendation

adds to the existing literature that highlights the importance of central agents for targeting

policies (Beaman et al., 2021a) and focuses on cost-effectively identifying these agents

(Banerjee et al., 2019). This recommendation is applicable only if a new technology is

such that there can be sufficient population heterogeneity in terms of its benefits. In

practice, this demands more information than the requirement for just identifying central

households, increasing the cost of network-based targeting. This increase in the cost

of network-based targeting may make it more attractive to randomly select more seed

households following the approach proposed by Akbarpour et al. (2021). We need a proper

cost-benefit analysis for this purpose, which is beyond the scope of this paper.
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Appendices

A Mathematical Definitions

The objective of this section is to formally define the network centrality measures used

in different parts of this paper. This section heavily draws from Chapter 2 of Jackson

(2010) and Chapter 7 of Newman (2010). More detailed descriptions along with some

applications can be found in these sources.

Let N = {1, 2, ...., n} be a set of agents (called nodes) involved in a network. The tuple

(N, g) defines a graph (or, network), where g is a real-valued n×n matrix (called adjacency

matrix) with gij representing the (possibly) weighted and/or directed relation between i

and j. 39 An edge (i, j) is defined as a link from i to j.40 Edge (i, j) exists if and only if

gij ̸= 0. A sequence of edges (i1, i2), (i2, i3), ....., (ik−1, ik) is called a walk. A path between

i and j is defined as a walk such that i1 = i and ik = j, with each node being distinct in

the walk. A geodesic path between two nodes i and j is defined as a path with no more

edges than any other paths between these nodes. In other words, geodesic path(s) between

i and j represent(s) the shortest distance from i to j.41

Degree Centrality:For an undirected and unweighted network (N, g), degree centrality

of a node k is given by:

Dk(N, g) =
n∑

i=1
gki,

which measures the number of nodes connected with node k. For a directed and unweighted

network (N, g), nodes have both in-degree and out-degree. Out-degree of node k measures
39Networks can be either weighted or unweighted. For a unweighted network, gij is either 0 or 1

representing whether i is connected to j or not. For weighted network, gij can take other non-negative
values. The weights represent the intensity of relationships. Networks can also be either directed or
undirected. For a directed network, I define gij to be representing a link from i to j, and gji to be
representing a link from j to i. In an undirected network, gij = gji ∀i, j ∈ N . Alternatively, in a directed
network, ∃i, j ∈ N, s.t. gij ̸= gji. For my theoretical model, I consider networks to be unweighted and
undirected. In the BBMM experiment, the networks were considered to be weighted and undirected.

40Which is the same as the edge (j, i) in an undirected network. Same may not be true for a directed
network.

41The calculation uses weights associated with the edges in the path(s).
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the number of nodes the node k connects to:

Dout
k (N, g) =

n∑
i=1

gki.

Similarly, in-degree of node k measures the number of nodes connected to node k:

D in
k (N, g) =

n∑
i=1

gik.

For weighted networks, the same measure is termed as the strength of node k.

Betweenness Centrality: Let P k
ij denote the number of geodesic paths from i to j

that passes through k, with Pij being the total number of geodesic paths from i to j. Then

the betweenness centrality of node k in network (N, g) is defined to be:

Bk(N, g) =
∑

∀i,j s.t.i ̸=j and k /∈{i,j}

(P k
ij

Pij

)
,

with P k
ij

Pij
= 0 if Pij = 0.

Closeness Centrality: Let Lki denote the number of edges in the shortest path

between k and i. Then the closeness centrality of node k in network (N, g) is defined as:

Ck(N, g) = (n − 1)∑
i ̸=k Lki

.

For an undirected graph, we consider distances between k and every other node. Alterna-

tively, for a directed graph, the distances from every other node to k is considered.

Eigenvector Centrality: For an undirected network (N, g), the eigenvector centrality

Ek(N, g) of node k is defined as:

λEk(N, g) =
∑
∀i

gkiEi(N, g),

where E (N, g) = {E1(N, g), E2(N, g), ...., EN (N, g)} is an eigenvector of g with λ being the

corresponding eigenvalue. It is conventional to use the eigenvector associated with the

largest eigenvalue.
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For a directed network (N, g), the adjacency matrix g is asymmetric. So, there are two

sets of eigenvectors: left eigenvectors (uses the connection of each nodes to other nodes) and

right eigenvectors (use the connection of other nodes to each nodes). Conventionally, the

right eigenvector is considered to be more important, which is a measure of how many other

nodes are pointing towards a node. For a directed network (N, g), the right-eigenvector

centrality E R
k (N, g) of node k can be defined as:

λRE R
k (N, g) =

∑
∀i

gikE
R
i (N, g),

where E R(N, g) = {E R
1 (N, g), E R

2 (N, g), ...., E R
N (N, g)} is a right-eigenvector of g with

λR being the corresponding eigenvalue. Again, it is conventional to use the eigenvector

associated with the largest eigenvalue.

It is important to note that a node having only outgoing edges will have a right

eigenvector centrality of zero in a directed network. The same is true for any node that

has incoming edges only from nodes that have only outgoing edges. In general, any node

whose all incoming connections can be traced back to node(s) with only outgoing edges

will have a right eigenvector centrality of zero in a directed network. This is a problematic

property for eigenvector centrality in a directed network. Since I consider only undirected

networks, I do not need to worry about this.

B Details on the Simulation Method

For the simulations presented in this paper, I simulated three different categories of networks.

These are homogeneous non-assortative networks, heterogeneous non-assortative networks,

and heterogeneous assortative networks. In this section, I describe the methodology used

for these simulations.

B.1 Simulating Homogeneous Networks

Step 1: Generating networks of households

The first step in simulating homogeneous non-assortative undirected networks is to ran-
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domly generate symmetric adjacency matrix g with elements 0 or 1 such that gij = gji, and

gii = 0, ∀i, j ∈ I. Then I generate the influence matrix G by normalizing each row of g.42

Remember that Gij ≥ 0 represents the weight i places on j’s opinion (with ∑
j∈I Gij = 1

and Gii ̸= 0). This procedure is repeated to generate 200 village networks.

Step 2: Generating true probabilities of success

The next step is to generate p∗
iHs for the networks. For homogeneous networks p∗

iH =

p∗
H , ∀i ∈ I. I draw one value of p∗

H for each of the 200 networks from the uniform

distribution U(0, 1).

Step 3: Selecting seeding strategy

Once I generate 200 villages with corresponding G and p∗
iHs, the next step is to study

the effectiveness of different seeding strategies. For a given network, I consider the initial

beliefs to be equal to 0 for all households: p̂H
i0 = 0. The seeded households then get

informed. Consider node k to be one of the seeds, then I exogenously set p̂H
k0 = p∗

kH . I

choose two seed households per village, in line with the experimental framework of BBMM.

The policy question is: which two households should we select in a given village? I consider

three different targeting strategies:

• Centrality-based: Select two households that have maximum average centrality in

a network.

• Probability-based: Select two households that have maximum average p∗
iHs in a

network.

• Random: Randomly select two households in a network.

For the homogeneous networks, the probability-based strategy will systematically select

the first two households in a network, as all pairs of households have the same average

p∗
iHs.

Step 4: Diffusion

Given the seeding strategy in a network, I let the diffusion take place for 10 periods. In
42Following convention, I assume the diagonal elements of the adjacency matrix (gii) to be zero. However,

I set gii = 1 before calculating the influence matrix G to allow for Gii ≠ 0 (for all networks in my simulation
exercise, irrespective of whether they are homogeneous or heterogeneous). For calculating centrality
measures (description below), the adjacency matrix g with gii = 0 is used.

47



each of these periods, each uninformed node (the nodes that do not know their p∗
iHs) makes

a decision of whether or not to get informed based on their p̂H
it . For that, each period

t, they compare p̂H
it with a threshold p̄H

i := p̄∗
iH + η̄i. I set the threshold p̄H

i = p̄H = 0.4,

for all households in different networks. If for any period t, p̂H
it > p̄H , the household is

considered informed next period onward (p̂H
is = p∗

iH∀s > t).

Step 5: Evaluation

In a set of 200 networks, I evaluate the targeting efficiency on average. Targeting efficiency

of strategy κ is measured by the following equation in each network:

Efficiencyκ = InformedT
κ

InformedT︸ ︷︷ ︸
Aκ

− InformedF
κ

UninformedT︸ ︷︷ ︸
Bκ

Here InformedT denotes the number of non-seed households that should get informed as they

would adopt the technology under perfect information. Additionally, InformedT
κ captures

the number of non-seed households that get informed within 10 periods of implementing

the targeting strategy κ, among those households in InformedT . UninformedT denotes the

number of non-seed households that should not get informed, and InformedF
κ captures the

number of non-seed households that end up getting informed among those households

given targeting strategy κ.

Step 6: Comparison

The evaluation is done for different seeding strategies. The results are then compared.

B.2 Simulating Heterogeneous Non-Assortative Networks

For heterogeneous non-assortative networks, step 1 and steps 3-6 remain the same. The

only difference is in step 2, where p∗
iHs (different for each households in heterogeneous

networks) are drawn for each household i ∈ I independently from the normal distribution

N(0.5, 10). The draws are then truncated such that p∗
iH ≥ 1 is truncated to 1, and p∗

iH ≤ 0

is truncated to 0.
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B.3 Simulating Heterogeneous Assortative Networks

Compared to homogeneous non-assortative networks, heterogeneous assortative networks

differ in steps 1 and 2. The rest of the steps remain the same.

Step 1: Generating true probabilities of success

For heterogeneous assortative networks, the first step is to generate p∗
iHs for a network.

For that purpose, I randomly draw p∗
iHs for each household in a network from the normal

distribution N(0.5, σ). The draws are then truncated, if necessary, such that p∗
iH ≥ 1 is

truncated to 1, and p∗
iH ≤ 0 is truncated to 0. If I set σ to be large enough, it would

lead all p∗
iHs to be either 0 or 1. On the other hand, lower values of σ keep p∗

iHs more

within 0 and 1. So, I can vary σ to control the degree of heterogeneity in terms of p∗
iHs.

This procedure is repeated 200 times for each σ to generate 200 villages with differing

levels of heterogeneity in terms of p∗
iHs, independent from each other. For Table 1 and its

robustness checks σ = 10, to make it comparable with the heterogeneous non-assortative

networks whose p∗
iHs are drawn from the normal distribution N(0.5, 10). For Figure 5 and

its robustness checks, σ takes a wider range of values within 0.1 and 100 (both inclusive).

Step 2: Generating networks of households

Once the p∗
iHs are generated, the next task is to generate networks assorted in terms of

these p∗
iHs. For that purpose, I generate adjacency matrix g such that ∀i ̸= j, gij = 1 if

|p∗
iH − p∗

jH | < 0.1 and 0 otherwise, and gii = 0. I then generate the influence matrix G by

normalizing each row of g (following the same methodology described for the homogeneous

networks above). This procedure is repeated to generate 200 village networks for each

value of σ.
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C Detailed Description of the Data Sources

C.1 Replication data of BBMM

In the BBMM experiment, the researchers conducted a Randomized Controlled Trial

(RCT) to promote Pit Planting (PP) for Maize farmers in Malawi.43 The researchers

seeded 200 villages from 3 Malawian districts with semi-arid climates (Machinga, Mwanza,

and Nkhotakota) with 2 ‘seed’ farmers each. The objective was to induce widespread

social learning of PP. The intervention involved training the seed farmers on PP (and

CRM), with the material of training remaining the same across different treatment arms.

The villages were equally divided into four experimental groups:

1. Complex Contagion: Seeding done assuming the underlying diffusion process

to be of complex diffusion. Under the assumption of this diffusion process, the

information diffuses only if a certain threshold of each household’s connections gets

informed. Under this assumption, both the optimally chosen seeds were central in

the network.

2. Simple Contagion: Seeding done assuming the underlying diffusion process to be

of simple diffusion. Under the assumption of this diffusion process, the information

diffuses with a random probability from one household to its connections. Under

this assumption, the optimal choice was to have one central seed household and one

seed household on the periphery.44

3. Geo: Villages were seeded solely based on geographic proximity. As a result, the

seed households were geographically located near each other but were not central (in

the network data).

4. Benchmark (control): Extension agents selected two seeds like they usually do.
43They also promoted Crop Residue Management (CRM). However, the sample on the use of CRM

is small. Thus, similar to the main analysis of BBMM, I focus on PP only. I also do not expect my
predictions to be valid for CRM, as CRM is not a new technology in the sampled areas. However, PP is a
fairly new technology there, so I expect my predictions to hold for PP.

44Households on the periphery of a network represent households that are not well connected in terms
of existing social ties.
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It is important to note that this experimental set-up focuses on seeding households solely

based on their positions in the network (in terms of social ties or geographic ties). Thus, the

diffusion of information was assumed to be independent of other household characteristics.

On the contrary, I consider households to be heterogeneous in their expected benefits from

the new technology, with this heterogeneity affecting the diffusion of information for a

given seeding strategy.

The researchers first collected the social network census data in 2010-11, before any

intervention or household survey took place. The census elicited names of people each

respondent consults when making agricultural decisions, information on household compo-

sition, socio-economic characteristics of the household, general agriculture information, and

workgroup membership information. They matched these responses with the village listing

to identify links. They considered individuals linked if either party named each other

(undirected network) or if they are part of the same household. Based on this network

information, the researchers used simulations to identify seeds according to the different

diffusion processes to optimize diffusion after four periods. For each of the 200 villages in

their study, the researchers used the simulations to identify the optimal choice of 2 seeds

following complex diffusion, simple diffusion, and geographic proximity. The villages were

then randomly allocated to one of the four treatment groups. Depending on the allocation,

2 seed households were selected per village. The researchers asked extension agents to

identify benchmark seeds only for the villages allocated to the control group. The seed

households then received training on PP (and CRM). Once the training was complete, the

researchers conducted household surveys to collect data on farming techniques, input use,

yields, assets, and other characteristics.

The researchers randomly surveyed a panel of approximately 30 households per village,

involving all the seed and shadow farmers, along with 22-24 other farmers. They collected

information on approximately 5600 households from the 200 villages. In 2 districts

(Machinga and Mwanza) that consist of 141 study villages, they collected three rounds of

survey data in 2011, 2012, and 2013. Due to unanticipated delays in project funding, in

the third district (Nkhotakota), they could only start the operation in 2012. Hence, for the
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third district with 59 study villages, they collected only two rounds of survey data (in 2012

and 2013). The first round of the survey was conducted a few months after the training

of the seed farmers. This round attempted to capture some baseline characteristics and

knowledge levels of the surveyed households regarding PP (and CRM). Every survey round

was conducted at the start of the agricultural season, after the land preparation. As PP is

used for land preparation, the households’ adoption decision of PP was observed three

times for Machinga and Mwanza, and twice for Nkhotakota.45 For more details on the

intervention and sampling of the study, please consult BBMM.

The objective of BBMM is to assess the effectiveness of different centrality-based

targeting strategies on the adoption of pit planting. For that purpose, they collected

detailed data on household-level adoption decisions over multiple survey rounds. The

replication package also includes information on household-level measures of centrality used

to select seeds under different experimental interventions. The former helps me calculate

the dependent variables for my analysis, while the latter helps by providing the information

I require to assess the centrality of seed households in the experiment. Additionally, I need

the surveyed households’ ex-ante probability of adoption for my analysis. This information

is not available in the replication data as BBMM does not consider the benefits of adoption

to be different across households. For this purpose, I turn to the AESTAS dataset.

C.2 AESTAS data

AESTAS covered all 29 districts of Malawi, except Likoma.46 The data collection was

done in waves 1 in 2016 and 2 in 2018. The publicly available version of the survey dataset

contains information from three different types of interviews:

1. Household Interviews: Ten households were randomly chosen for interview from

randomly selected sections within each district.47 Stratification was done based

on whether or not the household had a LF. Per section, up to two households
45Similarly, since CRM is used after harvest, the adoption of CRM was observed only twice for Machinga

and Mwanza, and once for Nkhotakota. Thus, the sample on the use of CRM is limited.
46The survey considered the Mzimba district as divided into North and South, and the Lilongwe district

as divided into East and West.
47Sections are geographical units in Malawi that are one level lower than districts.
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with LFs were selected. A total of around 299 sections were surveyed. The same

households were interviewed in the two waves with a small level of attrition (around

4%). Around 3000 households were surveyed in wave 1, with 2880 among them

being re-surveyed in wave 2. For each household, both the household head and

their spouses were interviewed. The survey collected data on technology adoption

and awareness, exposure to different technologies, access to extension services, and

socioeconomic and demographic characteristics.

2. Lead Farmer (LF) Interviews: Around 531 LF households were selected for

household interviews. During the first wave of the household survey, these LF

households were asked additional questions. These questions collected information

on the LF’s characteristics, activities, roles, expectations, incentives, challenges,

suggestions, any support they receive from agricultural extension development

officers (AEDOs) and other organizations, etc.

3. Community Interviews: In addition to the household surveys, 2-4 leaders per

village were surveyed in both waves. The objective was to collect community-level

information like the number of lead farmers, type of training they received, number

of projects, and other community characteristics.

More information on the survey and associated sampling can be found in Ragasa and Niu

(2017), Niu and Ragasa (2018), Ragasa (2020), and Ragasa et al. (2021).

For this study, I use the data collected through household interviews only. In particular, I

am interested in the data on household-level technology adoption. Two types of technology

adoption information are available in the data:

1. Reported adoption for a list of pre-determined technologies and practices. This list

focuses on both agricultural and food processing practices.

2. Reported plot-level usage for a list of pre-determined agricultural technologies and

practices.

This information helps me calculate adoption indices crucial to my analysis (see Appendix
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D for details on the construction of these indices). I use these indices as proxies for the

probability of adoption.

D Construction of Adoption and Usage Indices

To calculate the adoption index in the AESTAS data, I use the self-reported adoption

for a list of pre-determined technologies and practices. This includes the following 13

agricultural practices:

1. Soil cover

2. Zero or minimum tillage

3. Crop rotation

4. Intercropping

5. Crop residue incorporation

6. Composting pits or piles

7. Composting toilets

8. Agroforestry

9. Bunds or ridges

10. Pit planting

11. Planting vetivar grass

12. Water harvesting in pits or swales or dug outs

13. Manure or fertilizer making

As well as the following 5 food processing practices:

1. Including multiple food groups (dietary diversity) in each meal
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2. Consuming iron-rich foods

3. Using iodized salt in food preparation

4. Washing hands before preparing and consuming food

5. Food, health and nutrition

The adoption variables are available in the data as a set of dummy variables (1 implies

adoption, 0 implies no adoption). I take the average of these set of 18 dummy variables to

calculate the adoption index.

To calculate the usage index, I use the self-reported plot-level usage for the following

list of 19 agricultural technologies:

1. Contour bunds

2. Box ridges

3. Field leveling

4. Soil cover

5. Mulching

6. Zero or minimum tillage

7. Plowing with power tiller or animal tractor

8. Herbicide before planting

9. Herbicide after planting

10. Transplanting the seedlings

11. Rain water harvesting, water retention or water management practice

12. Proper plant spacing

13. Pesticide
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14. Putting crop residue on top of the soil (without soil disturbance)

15. Crop residue incorporation (with soil disturbance)

16. Getting soil sample to have it tested by soil experts

17. Asking advice from plant clinic or plant doctors

18. Pit planting

19. Row planting

The usage variables are available in the data, for both dry and rainy seasons, as a set

of dummy variables (1 implies usage, 0 implies no usage). First, I take the max of these

dummy variable per technology, for each year. Then I take the average of a set of 19

dummy variables to calculate the usage index.

E Approximating Probabilities of Adoption

For my regression specifications, I need to calculate the probability of adopting a new

technology for all households. The average of this probability measure for seed households

is Probabilityv in the regressions, while the coefficient of variation of this measure at the

village level is Heterogeneityv. However, in the BBMM experiment, the researchers did not

collect any information about these probabilities, as their micro-foundations assumed the

new technology’s benefits were the same across households. Hence, I need to approximate

these probabilities conditional on the observable characteristics of the households surveyed

in their study.

For this purpose, I use the data from AESTAS. The data contains information on

technology adoption and household characteristics. It surveys a nationally representative

set of farmers in Malawi on a universe of technologies that includes the technologies covered

in BBMM. I use this information on the universe of technologies to calculate adoption

and usage indices. Appendix D contains details on the construction of these indices. I use

the following regression specification to estimate the mapping from observable household
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characteristics to the adoption index:

Adoption Indexit = f(Xit; µit), (11)

where Xit are observable household characteristics. I consider only the characteristics

observed in both AESTAS and BBMM data. I present the robustness of the regression

results in the next subsection to other household characteristics observable only in the

AESTAS data and not in the BBMM data. The term µit captures the random error in the

regression. In my preferred specification, I consider function f(·) to be linear (thus, the

estimation uses ordinary least squares). However, I check the robustness of my results

to non-linear specifications. I present these in Appendix G. I use a similar regression

specification to estimate the mapping from observable household characteristics to the

usage index.

I use the estimations of this model to construct the adoption index (and the usage

index) conditional on the observable demographics in the BBMM dataset. I use this

variable to proxy for the households’ adoption probability. We should note that (11) gets

estimated with possible omitted variable bias. For example, there may be possible social

learning correlating with both the adoption index and observable demographics.48 Thus,

the coefficients estimated using (11) would represent a correlation, not causality. This bias

in estimating households’ adoption probabilities should not affect my coefficients of interest

in (12), as the identification uses experimental variations. However, we must consider

the consequences for (10). The bias in estimating households’ adoption probabilities

would lead to a biased Probabilityv in (10). However, this will only create a problem in

identifying the coefficient of interest β5 if this bias correlates with unobserved village-level

characteristics affecting adoption-related outcomes. This correlation is less likely to be

true because:

1. Household level bias should not correlate with village-level unobservables.
48More specifically, in the AESTAS data, households with higher adoption index may adopt more

technologies due to being connected to the lead farmers. Not controlling for this regression will overestimate
the adoption index for their demographics.
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2. Bias in the estimates originating from the AESTAS sample should not correlate with

the unobserved village-level variations in the BBMM sample.

However, since I cannot verify these assumptions, specification (12) provides an alternative.

Table E.1: Baseline Demographics Across Datasets

Variables
Dataset Statistic Adults Children Housing Livestock Assets
AESTAS Mean 2.14 3.00 -0.09 -0.03 -0.03

(SD) (1.00) (2.00) (0.98) (0.99) (1.00)
Median 2.00 3.00 -0.29 -0.40 -0.29

Observations 2820 2820 2803 2820 2820

BBMM Mean 2.36 2.77 -0.02 0.02 0.09
(SD) (0.95) (1.86) (0.99) (1.02) (1.03)

Median 2.00 3.00 -0.24 -0.31 -0.10

Observations 5384 5407 5382 5407 5407

Notes: The variables Adults and Children represent number of adults and children in a
household, respectively. The variables Housing, Livestock, and Assets were standardized
first principal components. For the AESTAS sample: Housing includes information
on materials walls are made of, roof materials, and floor materials. Each of the three
variables are coded to be 0- Traditional, 1- Modern. Assets includes the number of
bicycles, radios and cell phones the household owns. Livestock includes the number
of sheep, goats, chickens, cows, and pigs. For the BBMM sample: Housing includes
information on materials walls are made of, roof materials, floor materials and whether
the household has a toilet. Assets includes the number of bicycles, radios and cell phones
the household owns. Livestock is an index including the number of sheep, goats, chickens,
cows, pigs, guinea fowl, and doves. (footnote 1 from Table A5 of BBMM)

I start by comparing key baseline demographic information across datasets. This is

presented in Table E.1. The comparison is important as it helps me understand how the

estimates using the AESTAS data map into the BBMM data. The five variables chosen

are available in both AESTAS and BBMM data. In terms of the mean and median, both

datasets are similar in the number of adults and children in the household. However,

the BBMM sample is slightly richer than its AESTAS counterpart. We can see this by

comparing the mean and median of standardized housing, livestock, and assets PCA

(Principal Component Analysis) scores. This is not surprising given that AESTAS focused
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on a nationally representative sample of farmers in Malawi, whereas BBMM focuses only

on the Maize farmers.

Table E.2: OLS Regression Results for Adoption and Usage Indices

Adoption Index Usage Index
Variables (1) (2) (3) (4) (5) (6)
Adults 0.008*** 0.008*** 0.005** 0.011*** 0.011*** 0.008***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Children 0.003*** 0.003*** 0.002 0.003*** 0.003*** 0.002**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Housing 0.009*** 0.009*** 0.008*** 0.003 0.003 0.002

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Livestock 0.010*** 0.010*** 0.005* 0.014*** 0.014*** 0.009***

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)
Assets 0.024*** 0.024*** 0.017*** 0.020*** 0.020*** 0.014***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Year Fixed-Effects No Yes Yes No Yes Yes
Household Controls No No Yes No No Yes

Observations 5610 5608 5604 5610 5608 5604
R-squared 0.096 0.096 0.150 0.085 0.131 0.169

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the section level are in
parentheses. All regressions use sample weights and include a constant term. The variables Adults
and Children represent number of adults and children in a household, respectively. The variables
Housing, Livestock, and Assets were standardized first principal components. Housing includes
information on materials walls are made of, roof materials, and floor materials. Assets includes the
number of bicycles, radios and cell phones the household owns. Livestock includes the number of
sheep, goats, chickens, cows, and pigs. Household Controls include: gender and age of household
head, activity of household head (0- Non-Farmer, 1- Farmer), whether the household applied for a
loan in the past, the households’ time and risk preferences, and whether a household member is a
lead farmer (LF).

Table E.2 presents the main results for this subsection. Here, I estimate the adoption

and usage indices conditional on the demographics presented in Table E.1. The estimation

uses the AESTAS data. The first three columns present the results for the adoption index.

I observe a positive correlation between the households’ wealth level and their adoption

index.49 In addition, families with more adults and children report a higher adoption

index. The results remain almost identical when I control for the year-fixed effects. The

magnitudes and significance levels vary, controlling for other household-level characteristics.
49Here, households’ wealth level is captured by their housing, assets, and livestock principal component

analysis scores. Details on these variables are in the footnote of the table.
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However, the signs remain the same. The remaining three columns of the table present the

results for the usage index. The results are qualitatively similar to that of the adoption

index. The most notable difference is that the coefficient corresponding to the housing

PCA score is statistically insignificant throughout specifications. The main takeaway

from these results is that the coefficients remain similar with or without controlling for

year-fixed effects and other household-level characteristics. Thus, for calculating the

predicted adoption and usage indices, I use the estimates reported in columns (1) and (4),

respectively.

Panel A: Adoption Index Panel B: Usage Index

Figure E.1: Actual and Predicted Adoption and Usage Indices

Figure E.1 compares the actual and predicted indices for the AESTAS sample. The

estimates capture only a fraction of the actual variation. The actual adoption index has a

mean of 0.085 with a standard deviation of 0.120. Its predicted counterpart has a mean of

0.086 with a standard deviation of 0.038. The numbers are similar for the usage index in

terms of prediction quality. The actual usage index has a mean of 0.163 with a standard

deviation of 0.122, whereas the predicted usage index has a mean of 0.162 and a standard

deviation of 0.035. Thus, the predictions are good at predicting the mean but only capture

a third of the actual variation. This is not surprising given that the predictions are made

based on only a few observable demographics.

To use the estimated mapping from the observable demographics to the adoption and

usage indices for predicting the probability of adoption in the BBMM data, I need the

following assumptions:
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• Assumption 1: Adoption and Usage indices are good proxies for the probability of

adoption.

• Assumption 2: The variation in adoption and usage indices, conditional on the

demographics observable in both AESTAS and BBMM data, is sufficient for my

analysis.

• Assumption 3: The mapping of observable characteristics to the adoption proba-

bility is the same across the datasets I use in this study.

• Assumption 4: Any bias in the estimated relationship between adoption probability

and observable characteristics is independent of the unobserved village-level learning

in the BBMM sample.

The first three assumptions are necessary for extrapolating the AESTAS information

to the BBMM data. There is no formal way of testing these assumptions. I need the

fourth assumption for unbiased identification of β5 in (10), as I already discussed in the

last section.

F Identification using Between-Treatment Variations

F.1 Specification

To explore between treatment group variations, I use the following specification:

Outcomevt = θ0 + θ1Centralityv + θ2Probabilityv + θ3Heterogeneityv (12)

+ ξbCentralityv × Heterogeneityv + ξcCentralityv × Heterogeneityv × Complexv

+ ξsCentralityv × Heterogeneityv × Simplev + ξgCentralityv × Heterogeneityv × Geov

+ ϕbProbabilityv × Heterogeneityv + ϕcProbabilityv × Heterogeneityv × Complexv

+ ϕsProbabilityv × Heterogeneityv × Simplev + ϕgProbabilityv × Heterogeneityv × Geov

+ γXv + ρt + ηvt.
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Specification (12) is similar to specification (10), except the interactions of Centralityv ×

Heterogeneityv and Probabilityv × Heterogeneityv with treatment dummies. Here, ξb

captures the interaction between seed centrality and village-level heterogeneity for the

benchmark treatment group. ξc, ξs, and ξg captures how that interaction changes compared

to the benchmark for complex, simple, and geo treatment groups. Similarly, ϕb captures

the interaction between seed probability and village-level heterogeneity for the benchmark

treatment group. ϕc, ϕs, and ϕg captures how that interaction changes compared to the

benchmark for complex, simple, and geo treatment groups. Thus, for example for complex

treatment group, the effect of Centralityv × Heterogeneityv on the outcome variable is

(ξb + ξc); the effect of Probabilityv × Heterogeneityv on the outcome variable is (ϕb + ϕc).

I expect the impact of Centralityv × Heterogeneityv to be negative and the effect of

Probabilityv × Heterogeneityv to be positive, within different treatment groups. However,

I am more interested in exploring between-group variations using this specification. Thus,

the main coefficients of interest in this specification are ξ = {ξc, ξs, ξg} and ϕ = {ϕc, ϕs, ϕg}.

For a treatment group with the same heterogeneity level as the benchmark, I expect

outcomes to be positively related to centrality and negatively related to probability. Thus,

given the population heterogeneity of a group and the adoption probability of the seeds,

moving to higher (lower) centrality seeds helps diffuse the technology to more (less)

households. Similarly, given the population heterogeneity of a group and the centrality

of the seeds, moving to higher (lower) probability seeds diffuses the technology to fewer

(more) households. While exploring the village-level non-experimental variations, I argue

the same for (10). Thus, I skip the reasoning of this argument here.

If the treatment group is less heterogeneous than the benchmark, I expect seeds with

higher centrality to perform better and seeds with a higher adoption probability to perform

worse. From my simulations, I expect centrality-based targeting (or probability-based

targeting) to perform better (worse) with population homogeneity. If a treatment group

is less heterogeneous than the benchmark, it is more homogenous in its population’s

probability of adoption. Thus, I expect more central seeds to perform better and seeds

with higher adoption probability to perform worse. In this case, however, my theory does
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not have any prediction for seed households with lower centrality and adoption probability.

For treatment groups less heterogeneous than the benchmark, the effect of having seeds

with less centrality (or less adoption probability) depends on the relative impacts of the

population homogeneity and centrality (or adoption probability). Hence, I have no specific

predictions on the performance of such seeds. Similarly, for treatment groups having higher

population heterogeneity than the benchmark, I expect the seed households with lower

centrality to perform better and seeds with lower adoption probability to perform worse.

In this case, my theory does not have any prediction for the seed households with more

centrality and adoption probability.

As an example, let us consider the complex treatment group. If this group has the

same level of heterogeneity as the benchmark, I expect ξc to be positive (negative) if the

complex treatment group has more (less) central seeds than the benchmark. Similarly, I

expect ϕc to be negative (positive) if the complex treatment group has a higher (lower)

seed adoption probability than the benchmark. Now, if the complex treatment group is

less heterogeneous than the benchmark, I expect the following:

• If they have more central seeds than the benchmark: positive ξc; less central seeds

than benchmark: depends on the relative effects of the drop in centrality and

heterogeneity.

• If they have seeds with higher adoption probability than the benchmark: negative

ϕc; seeds with a lower adoption probability than benchmark: depends on the relative

effects of the drop in probability and heterogeneity.

Similarly, if the complex treatment group is more heterogeneous than the benchmark, I

expect:

• If they have less central seeds than the benchmark: positive ξc; more central seeds

than benchmark: depends on the relative effects of the increase in centrality and

heterogeneity.

• If they have seeds with a lower adoption probability than the benchmark: negative

ϕc; seeds with higher adoption probability than benchmark: depends on the relative
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effects of the increase in probability and heterogeneity.

Like specification (10), I control for baseline village-level characteristics and year-fixed

effects. As the coefficients of interest use interactions with the treatment dummies, I do

not need any additional assumption other than assuming the success of the randomization.

Finally, it is important to note that I do not include the treatment dummies in specification

(12) as BBMM argues that the treatment status affects the outcome variables only through

the centrality of the seeds. In Appendix G, I present the robustness of my results by

including the treatment dummies. My results remain robust.

F.2 Results

Table F.1 focuses on exploring between treatment group variations. Here, I am interested in

the coefficients of Centralityv × Heterogeneityv and Probabilityv × Heterogeneityv, across

different treatment groups. Note that the sign of Centralityv × Heterogeneityv is negative,

and the sign of Probabilityv × Heterogeneityv is positive within different treatment groups,

in line with the results of table 3. Table F.1 notes the differences in the coefficients of

Centralityv ×Heterogeneityv and Probabilityv ×Heterogeneityv, across different treatment

groups. Some of these differences are statistically significant, while others are not. However,

the signs are all consistent with my discussion in the last subsection.

Columns (1) and (2) present the results for Adoption Rate, with and without the

village-level controls. The results show that for a completely homogeneous village, one

standard deviation increase in the eigenvector centrality of seed households leads to a

1.01-1.24 standard deviation improvement in the adoption rate. However, for benchmark

villages having heterogeneity at the level of baseline benchmark mean, the effect drops to

a decrease of 0.27-0.38 standard deviations. The negative effect of heterogeneity on the

relationship between seeds’ centrality and the adoption rate is lower for the other treatment

groups compared to the benchmark. However, the difference is statistically significant

only for the complex and geo treatment groups. Similarly, one standard deviation increase

in the adoption probability of seed households decreases the adoption rate by 0.95-1.42

standard deviations for a homogeneous village. However, for benchmark villages having
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Table F.1: Village level Regression 2 of Adoption Outcomes (Pit Planting)

Adoption Rate Any Non-Seed Adopters
Variables (1) (2) (3) (4)
Eigenvector Centrality of Seeds 0.775* 0.633* 1.703 1.638
(=Centralityv) (0.423) (0.378) (1.660) (1.468)
Predicted Adoption Index of Seeds -2.362** -1.578 -10.419*** -5.947*
(=Probabilityv) (1.091) (1.024) (3.679) (3.566)
CV of Predicted Adoption Index -0.321 -0.150 -0.923 0.417
(=Heterogeneityv) (0.206) (0.200) (1.105) (1.073)
Centralityv × Heterogeneityv -2.423** -2.237** -6.692 -6.574

(1.093) (0.996) (4.503) (4.119)
Centralityv × Heterogeneityv × Complex 0.657** 0.664** 4.328** 3.756**

(0.306) (0.282) (1.775) (1.664)
Centralityv × Heterogeneityv × Simple 0.416 0.428 1.078 0.431

(0.337) (0.320) (2.060) (1.947)
Centralityv × Heterogeneityv × Geo 2.026** 1.942** 0.103 -0.070

(0.940) (0.839) (2.235) (2.098)
Probabilityv × Heterogeneityv 5.881** 4.104* 22.97*** 12.35

(2.437) (2.286) (7.720) (7.626)
Probabilityv × Heterogeneityv × Complex -0.155 -0.232 -1.275 -0.679

(0.520) (0.497) (2.765) (2.654)
Probabilityv × Heterogeneityv × Simple -0.121 -0.110 1.941 3.511

(0.642) (0.571) (3.572) (3.333)
Probabilityv × Heterogeneityv × Geo -2.588** -2.562** -0.391 0.538

(1.131) (1.039) (4.028) (3.618)

Village-level Controls No Yes No Yes

Observations 324 324 324 324
R-squared 0.133 0.224 0.113 0.222

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All regressions
include a constant term and year fixed effects. Village-level controls include percentage of village using pit
planting at baseline, percentage of village using compost at baseline, percentage of village using fertilizer
at baseline, village size, the square of village size, and district fixed effects.
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heterogeneity at the baseline benchmark mean level, the effect size decreases to 0-0.04

standard deviations. The positive effect of heterogeneity on the relationship between seeds’

adoption probability and the adoption rate is lower for complex and simple treatment

groups. However, these differences are statistically insignificant. The impact is significantly

lower compared to the benchmark for the geo treatment group only.

The results for Any Non-Seed Adopters are in columns (3) and (4), with and without

the village-level controls. For this outcome variable, the effects are also in the same

direction for all the treatment groups. The results show that one standard deviation

increase in eigenvector centrality for homogeneous villages leads to a 0.33-0.34 standard

deviation improvement in the probability of having at least one non-seed adopter. But, for

benchmark villages having heterogeneity at the level of baseline benchmark mean, the effect

drops to around 0.18 standard deviations decrease in the probability of having at least

one non-seed adopter. The negative impact of heterogeneity on the relationship between

seeds’ centrality and the probability of having non-seed adopters is lower for the other

treatment groups. However, the effect is significantly lower only for the complex treatment

group. On the other hand, one standard deviation increase in the predicted adoption

index decreases the probability of having at least one non-seed adopter by 0.45-0.79

standard deviations for a homogeneous village. However, for benchmark villages having

heterogeneity at the level of baseline benchmark mean, the effect drops to a decrease of

0.09-0.11 standard deviations. The positive impact of heterogeneity on the relationship

between seeds’ adoption probability and the probability of having non-seed adopters is

lower for the complex treatment group, higher for the simple treatment group, and different

for the geo treatment group. However, none of these differences are statistically significant.
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G Robustness Checks

Table G.1: Simulation Robustness (w.r.t different centrality measure)

Homogeneous Heterogeneous
Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)
Betweenness Centrality-Based Mean 0.463 -0.010 0.635

Variance 0.225 0.002 0.210

Probability-Based Mean 0.189 -0.040 0.956
Variance 0.125 0.023 0.004

Random Mean 0.000 0.000 0.438
Variance 0.000 0.000 0.228

Observations† 239 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with heteroge-
neous probabilities. Upon generation of the true probabilities, some networks are dropped as they contained
0% of informed households under full efficiency. Columns (2) and (3) use the efficiency measure Efficiencyκ to
measure the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ for that purpose.
All networks contain 30 households, and the threshold probability of learning is assumed to be 0.4 for all of
them. For assortative networks, each pair of households having a success probability difference of 0.1 or less is
assumed to be connected.
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Table G.2: Simulation Robustness (w.r.t p̄H
i = 0.5, instead of p̄H

i = 0.4)

Homogeneous Heterogeneous
Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)
Eigenvector Centrality-Based Mean 0.197 -0.007 0.414

Variance 0.136 0.006 0.230

Probability-Based Mean 0.017 -0.009 0.965
Variance 0.008 0.012 0.003

Random Mean 0.000 0.000 0.161
Variance 0.000 0.000 0.129

Observations† 197 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with
heterogeneous probabilities. Upon generation of the true probabilities, some networks are dropped as they
contained 0% of informed households under full efficiency. Columns (2) and (3) use the efficiency measure
Efficiencyκ to measure the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ

for that purpose. All networks contain 30 households, and the threshold probability of learning is assumed to
be 0.5 for all of them. For assortative networks, each pair of households having a success probability difference
of 0.1 or less is assumed to be connected.

Table G.3: Simulation Robustness (w.r.t p̄H
i = 0.3, instead of p̄H

i = 0.4)

Homogeneous Heterogeneous
Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)
Eigenvector Centrality-Based Mean 0.642 -0.004 0.409

Variance 0.218 0.008 0.224

Probability-Based Mean 0.481 -0.031 0.948
Variance 0.236 0.012 0.004

Random Mean 0.018 0.003 0.469
Variance 0.010 0.003 0.227

Observations† 281 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with
heterogeneous probabilities. Upon generation of the true probabilities, some networks are dropped as they
contained 0% of informed households under full efficiency. Columns (2) and (3) use the efficiency measure
Efficiencyκ to measure the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ

for that purpose. All networks contain 30 households, and the threshold probability of learning is assumed to
be 0.3 for all of them. For assortative networks, each pair of households having a success probability difference
of 0.1 or less is assumed to be connected.
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Table G.4: Simulation Robustness (w.r.t 20 households, instead of 30, per network)

Homogeneous Heterogeneous
Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)
Eigenvector Centrality-Based Mean 0.724 -0.029 0.464

Variance 0.184 0.018 0.236

Probability-Based Mean 0.504 -0.072 0.947
Variance 0.226 0.031 0.008

Random Mean 0.025 -0.014 0.447
Variance 0.015 0.012 0.233

Observations† 230 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with
heterogeneous probabilities. Upon generation of the true probabilities, some networks are dropped as they
contained 0% of informed households under full efficiency. Columns (2) and (3) use the efficiency measure
Efficiencyκ to measure the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ

for that purpose. All networks contain 20 households, and the threshold probability of learning is assumed to
be 0.4 for all of them. For assortative networks, each pair of households having a success probability difference
of 0.1 or less is assumed to be connected.

Table G.5: Simulation Robustness (w.r.t 40 households, instead of 30, per network)

Homogeneous Heterogeneous
Non-Assortative Assortative

Targeting Strategy Statistic (1) (2) (3)
Eigenvector Centrality-Based Mean 0.184 -0.002 0.504

Variance 0.125 0.002 0.232

Probability-Based Mean 0.013 -0.009 0.955
Variance 0.009 0.009 0.003

Random Mean 0.000 0.000 0.103
Variance 0.000 0.000 0.086

Observations† 241 200 200

Notes:† Simulations are done for 400 networks with homogeneous probabilities and 200 networks with
heterogeneous probabilities. Upon generation of the true probabilities, some networks are dropped as they
contained 0% of informed households under full efficiency. Columns (2) and (3) use the efficiency measure
Efficiencyκ to measure the efficiency of the targeting strategy κ. Column (1) uses the term Aκ of Efficiencyκ

for that purpose. All networks contain 40 households, and the threshold probability of learning is assumed to
be 0.4 for all of them. For assortative networks, each pair of households having a success probability difference
of 0.1 or less is assumed to be connected.
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Panel A: Linear Scale Panel B: Logarithmic Scale

Figure G.1: Efficiency scores over increasing levels of heterogeneity (with assortative
networks) w.r.t betweenness centrality (instead of eigenvector centrality)

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure G.2: Efficiency scores over increasing levels of heterogeneity (with assortative
networks w.r.t δ = 0.2 instead of δ = 0.1)
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Panel A: Linear Scale Panel B: Logarithmic Scale

Figure G.3: Efficiency scores over increasing levels of heterogeneity (with assortative
networks w.r.t δ = 0.05 instead of δ = 0.1)

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure G.4: Efficiency scores over increasing levels of heterogeneity (w.r.t p̄H
i = 0.5, instead

of p̄H
i = 0.4)
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Panel A: Linear Scale Panel B: Logarithmic Scale

Figure G.5: Efficiency scores over increasing levels of heterogeneity (w.r.t p̄H
i = 0.3, instead

of p̄H
i = 0.4)

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure G.6: Efficiency scores over increasing levels of heterogeneity (w.r.t 20 households,
instead of 30, per network)
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Panel A: Linear Scale Panel B: Logarithmic Scale

Figure G.7: Efficiency scores over increasing levels of heterogeneity (w.r.t 40 households,
instead of 30, per network)

Panel A: Linear Scale Panel B: Logarithmic Scale

Figure G.8: Efficiency scores over increasing levels of assortativity (with same heterogene-
ity)
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Panel A: Linear Scale Panel B: Logarithmic Scale

Figure G.9: Efficiency scores over increasing levels of heterogeneity (with non-assortative
networks)

Table G.6: OLS Results for Adoption and Usage (Pooled vs. Individual Years)

Adoption Index Usage Index
Variables (1) (2) (3) (4) (5) (6)
Adults 0.008*** 0.009*** 0.006** 0.011*** 0.013*** 0.008***

(0.002) (0.003) (0.003) (0.002) (0.002) (0.002)
Children 0.003*** 0.004** 0.003** 0.003*** 0.001 0.005***

(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)
Housing 0.009*** 0.013*** 0.005* 0.003 0.003 0.003

(0.002) (0.003) (0.003) (0.002) (0.003) (0.003)
Livestock 0.010*** 0.014*** 0.007* 0.014*** 0.020*** 0.007**

(0.003) (0.004) (0.004) (0.002) (0.003) (0.003)
Assets 0.024*** 0.014*** 0.034*** 0.020*** 0.011*** 0.029***

(0.002) (0.003) (0.003) (0.002) (0.003) (0.003)

Year Pooled 2016 2018 Pooled 2016 2018

Observations 5610 2803 2805 5610 2803 2805
R-squared 0.096 0.082 0.125 0.085 0.088 0.103

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the section
level are in parentheses. All regressions use sample weights and include a constant term.
Household controls are not included. The variables Adults and Children represent number
of adults and children in a household, respectively. The variables Housing, Livestock, and
Assets were standardized first principal components.
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Table G.10: Village level Regression 1 with Different Measure of Probability

Adoption Rate Any Non-Seed Adopters
Variables (1) (2) (3) (4)
Eigenvector Centrality of Seeds 0.999* 0.817* 0.984 1.067
(=Centralityv) (0.565) (0.480) (1.303) (1.191)
Predicted Usage Index of Seeds -2.174 -1.511 -4.599 -0.084
(=Probabilityv) (1.410) (1.279) (3.317) (3.053)
CV of Predicted Usage Index -1.091 -0.631 -2.549 2.142
(=Heterogeneityv) (0.805) (0.779) (2.905) (2.823)
Centralityv × Heterogeneityv -4.481* -3.936* -4.874 -5.907

(2.623) (2.281) (6.889) (6.437)
Probabilityv × Heterogeneityv 10.325* 7.276 23.126 0.889

(6.160) (5.623) (14.187) (13.397)

Village-level Controls No Yes No Yes

Observations 324 324 324 324
R-squared 0.063 0.174 0.037 0.164

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All
regressions include a constant term and year fixed effects. Village-level controls include
percentage of village using pit planting at baseline, percentage of village using compost at
baseline, percentage of village using fertilizer at baseline, village size, the square of village
size, and district fixed effects.
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Table G.11: Village level Regression 2 with Different Measure of Probability

Adoption Rate Any Non-Seed Adopters
Variables (5) (6) (7) (8)
Eigenvector Centrality of Seeds 0.730 0.644 1.525 1.482
(=Centralityv) (0.471) (0.446) (1.528) (1.337)
Predicted Usage Index of Seeds -1.975 -1.400 -7.027* -2.854
(=Probabilityv) (1.200) (1.148) (3.982) (3.619)
CV of Predicted Usage Index -1.203 -0.727 -3.640 0.546
(=Heterogeneityv) (0.755) (0.731) (3.203) (3.116)
Centralityv × Heterogeneityv -4.619* -4.617* -12.422 -12.190

(2.549) (2.473) (8.555) (7.660)
Centralityv × Heterogeneityv × Complex 1.432* 1.595** 9.431** 8.099**

(0.749) (0.720) (4.323) (3.996)
Centralityv × Heterogeneityv × Simple 0.492 0.576 3.308 1.958

(0.860) (0.831) (4.665) (4.340)
Centralityv × Heterogeneityv × Geo 3.957* 3.711** -1.692 -2.661

(2.057) (1.785) (4.676) (4.495)
Probabilityv × Heterogeneityv 10.265* 7.702 33.705* 13.412

(5.561) (5.378) (17.388) (16.257)
Probabilityv × Heterogeneityv × Complex -0.316 -0.589 -2.606 -1.839

(0.762) (0.778) (4.577) (4.315)
Probabilityv × Heterogeneityv × Simple 0.428 0.416 1.355 3.119

(0.984) (0.866) (5.269) (4.868)
Probabilityv × Heterogeneityv × Geo -2.468* -2.409** 2.565 3.786

(1.377) (1.217) (4.925) (4.505)

Village-level Controls No Yes No Yes

Observations 324 324 324 324
R-squared 0.114 0.212 0.100 0.215

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All regressions
include a constant term and year fixed effects. Village-level controls include percentage of village using
pit planting at baseline, percentage of village using compost at baseline, percentage of village using
fertilizer at baseline, village size, the square of village size, and district fixed effects.

79



Table G.12: Village level Regression 1 with Different Measure of Centrality

Adoption Rate Any Non-Seed Adopters
Variables (1) (2) (3) (4)
Closeness Centrality of Seeds 0.609** 0.454* 0.571 0.617
(=Centralityv) (0.306) (0.234) (0.709) (0.659)
Predicted Adoption Index of Seeds -2.438** -1.709 -7.555** -2.904
(=Probabilityv) (1.230) (1.134) (3.201) (3.152)
CV of Predicted Adoption Index -0.077 -0.007 -0.677 0.887
(=Heterogeneityv) (0.214) (0.202) (1.196) (1.158)
Centralityv × Heterogeneityv -1.325* -1.020* -1.552 -1.997

(0.716) (0.558) (1.896) (1.823)
Probabilityv × Heterogeneityv 5.610** 3.814 17.554** 6.849

(2.660) (2.439) (6.873) (6.939)

Village-level Controls No Yes No Yes

Observations 324 324 324 324
R-squared 0.087 0.179 0.048 0.170

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All
regressions include a constant term and year fixed effects. Village-level controls include percentage
of village using pit planting at baseline, percentage of village using compost at baseline, percentage
of village using fertilizer at baseline, village size, the square of village size, and district fixed
effects.
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Table G.13: Village level Regression 2 with Different Measure of Centrality

Adoption Rate Any Non-Seed Adopters
Variables (5) (6) (7) (8)
Closeness Centrality of Seeds 0.497** 0.336* 0.603 0.727
(=Centralityv) (0.242) (0.183) (0.713) (0.707)
Predicted Adoption Index of Seeds -1.734 -1.077 -9.416** -5.382
(=Probabilityv) (1.056) (0.986) (3.663) (3.520)
CV of Predicted Adoption Index 0.001 0.059 -0.627 0.912
(=Heterogeneityv) (0.216) (0.213) (1.228) (1.205)
Centralityv × Heterogeneityv -1.457** -1.181** -2.508 -3.114

(0.591) (0.478) (1.935) (1.939)
Centralityv × Heterogeneityv × Complex 0.307** 0.304** 1.446* 1.355*

(0.137) (0.140) (0.838) (0.810)
Centralityv × Heterogeneityv × Simple 0.364** 0.395*** -0.401 -0.498

(0.157) (0.152) (0.934) (0.917)
Centralityv × Heterogeneityv × Geo 0.679** 0.667** 0.517 0.140

(0.267) (0.262) (0.988) (0.914)
Probabilityv × Heterogeneityv 4.791** 3.306 19.312*** 9.942

(2.281) (2.166) (7.105) (6.963)
Probabilityv × Heterogeneityv × Complex -0.351 -0.419 0.056 0.189

(0.632) (0.637) (3.155) (3.031)
Probabilityv × Heterogeneityv × Simple -1.125* -1.235* 4.299 5.406

(0.664) (0.629) (3.876) (3.727)
Probabilityv × Heterogeneityv × Geo -2.855** -2.864** -2.748 0.060

(1.200) (1.187) (4.867) (4.398)

Village-level Controls No Yes No Yes

Observations 324 324 324 324
R-squared 0.121 0.209 0.109 0.223

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All regressions
include a constant term and year fixed effects. Village-level controls include percentage of village using pit
planting at baseline, percentage of village using compost at baseline, percentage of village using fertilizer
at baseline, village size, the square of village size, and district fixed effects.
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